Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published May 28, 2020 | Version v3
Other Open

Supporting information for "BioDynaMo: a modular platform for high-performance agent-based simulation"

  • 1. CERN, ETH Zurich
  • 2. CERN, Delft University of Technology
  • 3. CERN
  • 4. University of Cyprus, University College London
  • 5. University of Cyprus
  • 6. Newcastle University (UK)
  • 7. Newcastle University (UK), Shanghai Jiao Tong University School of Medicine, University of Nottingham (UK)
  • 8. SCimPulse Foundation
  • 9. Delft University of Technology
  • 10. ETH Zurich
  • 11. University of Surrey (UK)

Description

This repository contains all supporting material for the paper "BioDynaMo: a modular platform for high-performance agent-based simulation".

This paper was published in the Bioinformatics journal and is available at: https://doi.org/10.1093/bioinformatics/btab649

If you find this repository useful, please cite the following works:

Lukas Breitwieser et al., BioDynaMo: a modular platform for high-performance agent-based simulation, Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 453–460, https://doi.org/10.1093/bioinformatics/btab649

@article{breitwieser_biodynamo_2022,
    author = {Breitwieser, Lukas and Hesam, Ahmad and de Montigny, Jean and Vavourakis, Vasileios and Iosif, Alexandros and Jennings, Jack and Kaiser, Marcus and Manca, Marco and Di Meglio, Alberto and Al-Ars, Zaid and Rademakers, Fons and Mutlu, Onur and Bauer, Roman},
    title = "{BioDynaMo: a modular platform for high-performance agent-based simulation}",
    journal = {Bioinformatics},
    volume = {38},
    number = {2},
    pages = {453-460},
    year = {2021},
    month = {09},
    issn = {1367-4803},
    doi = {10.1093/bioinformatics/btab649},
    url = {https://doi.org/10.1093/bioinformatics/btab649}
}

Lukas Breitwieser et al., High-Performance and Scalable Agent-Based Simulation with BioDynaMo. 2023, In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association for Computing Machinery, New York, NY, USA, 174–188. https://doi.org/10.1145/3572848.3577480 arXiv:2301.06984 [cs.DC]

This work received the Best Artifact Award at PPoPP '23.
@inproceedings{breitwieser_biodynamo_2023,
  author = {Breitwieser, Lukas and Hesam, Ahmad and Rademakers, Fons and Luna, Juan G\'{o}mez and Mutlu, Onur},
  title = {High-Performance and Scalable Agent-Based Simulation with BioDynaMo},
  year = {2023},
  isbn = {9798400700156},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3572848.3577480},
  doi = {10.1145/3572848.3577480},
  booktitle = {Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming},
  pages = {174–188},
  numpages = {15},
  keywords = {NUMA, HPC, performance evaluation, parallel computing, space-filling curve, high-performance simulation, performance optimization, agent-based modeling, memory layout optimization, memory allocation, scalability},
  location = {Montreal, QC, Canada},
  series = {PPoPP '23},
  archivePrefix = "arXiv",
  eprint        = "2301.06984",
  primaryClass  = "cs.DC"
}

Files

SF1-supplementary-materials.pdf

Files (6.2 GB)

Name Size Download all
md5:47093d491ced836423337e451a6a0ccc
4.5 MB Preview Download
md5:a6943db158803f884f03d4d6a073a4ca
3.5 kB Preview Download
md5:9c6582629d1974173c0fbafb8db771e3
141.7 MB Download
md5:989712d379cbd0d25f697db69228478e
82 Bytes Download
md5:ddefc43626600f8e5f0f39281a657c2c
5.8 GB Download
md5:dbe988cebf9e3a977226179e660f877d
99 Bytes Download
md5:c54b2304763d3234cfa7ec604e4a1908
122.4 MB Download
md5:d2f5bed4cffa9dd162ccd6bf2ac26a81
89 Bytes Download
md5:9b5f403f1b018c3c444bd474e2497947
423.7 kB Preview Download
md5:7ea609dc584edc23f43d0c340e643970
85.8 kB Preview Download
md5:6c39b57703f7afe9bbe7ec2fbc316eaf
177.3 kB Preview Download
md5:fee9e15a20824c29aa95709c8b27af50
119.9 kB Preview Download
md5:70f3927ad54112de7e4bde043acefef7
72.6 kB Preview Download
md5:24a7e7ead320cf7671881a0f3d78bec6
119.1 kB Preview Download
md5:426d70b5ebb2b48cb790d8d34013026a
106.1 kB Preview Download
md5:c51d4a7ed8fd720efc57a90835025fad
250.3 kB Preview Download
md5:f5c73937c5e119c045ac2b132f894091
178.3 kB Preview Download
md5:381e1b8d678ea57c2315fec55833eed8
297.4 kB Preview Download
md5:76877726ad2058da3b8974bd61f3d6e6
224.6 kB Preview Download
md5:bc95a2791754851886477f3ea3a45ee5
150.6 kB Preview Download
md5:7099e888887d2616b5db8e7895174ab0
179.5 kB Preview Download
md5:80ea6e1c3605c4dcba350c95364fe48c
101.3 kB Preview Download
md5:ab1d4c6d82eea21fd9d27e0c134cf556
197.8 kB Preview Download
md5:1f7958ccfe9a5c2c270411238961a3d0
290.0 kB Preview Download
md5:b3406651ede9bce7cc3b553f66fe9116
43.6 MB Preview Download
md5:bbab4718e1139e29ff6a7de048ac4a6c
3.4 MB Preview Download
md5:7ecce9467fb19e0f9930ab01a42450f9
113.0 MB Preview Download

Additional details

Related works

Is supplement to
Journal article: 10.1093/bioinformatics/btab649 (DOI)