Supporting information for "BioDynaMo: a modular platform for high-performance agent-based simulation"
Creators
- 1. CERN, ETH Zurich
- 2. CERN, Delft University of Technology
- 3. CERN
- 4. University of Cyprus, University College London
- 5. University of Cyprus
- 6. Newcastle University (UK)
- 7. Newcastle University (UK), Shanghai Jiao Tong University School of Medicine, University of Nottingham (UK)
- 8. SCimPulse Foundation
- 9. Delft University of Technology
- 10. ETH Zurich
- 11. University of Surrey (UK)
Description
This repository contains all supporting material for the paper "BioDynaMo: a modular platform for high-performance agent-based simulation".
This paper was published in the Bioinformatics journal and is available at: https://doi.org/10.1093/bioinformatics/btab649
If you find this repository useful, please cite the following works:
Lukas Breitwieser et al., BioDynaMo: a modular platform for high-performance agent-based simulation, Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 453–460, https://doi.org/10.1093/bioinformatics/btab649
@article{breitwieser_biodynamo_2022,
author = {Breitwieser, Lukas and Hesam, Ahmad and de Montigny, Jean and Vavourakis, Vasileios and Iosif, Alexandros and Jennings, Jack and Kaiser, Marcus and Manca, Marco and Di Meglio, Alberto and Al-Ars, Zaid and Rademakers, Fons and Mutlu, Onur and Bauer, Roman},
title = "{BioDynaMo: a modular platform for high-performance agent-based simulation}",
journal = {Bioinformatics},
volume = {38},
number = {2},
pages = {453-460},
year = {2021},
month = {09},
issn = {1367-4803},
doi = {10.1093/bioinformatics/btab649},
url = {https://doi.org/10.1093/bioinformatics/btab649}
}
Lukas Breitwieser et al., High-Performance and Scalable Agent-Based Simulation with BioDynaMo. 2023, In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association for Computing Machinery, New York, NY, USA, 174–188. https://doi.org/10.1145/3572848.3577480 arXiv:2301.06984 [cs.DC]
This work received the Best Artifact Award at PPoPP '23.
@inproceedings{breitwieser_biodynamo_2023,
author = {Breitwieser, Lukas and Hesam, Ahmad and Rademakers, Fons and Luna, Juan G\'{o}mez and Mutlu, Onur},
title = {High-Performance and Scalable Agent-Based Simulation with BioDynaMo},
year = {2023},
isbn = {9798400700156},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3572848.3577480},
doi = {10.1145/3572848.3577480},
booktitle = {Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming},
pages = {174–188},
numpages = {15},
keywords = {NUMA, HPC, performance evaluation, parallel computing, space-filling curve, high-performance simulation, performance optimization, agent-based modeling, memory layout optimization, memory allocation, scalability},
location = {Montreal, QC, Canada},
series = {PPoPP '23},
archivePrefix = "arXiv",
eprint = "2301.06984",
primaryClass = "cs.DC"
}
Files
SF1-supplementary-materials.pdf
Files
(6.2 GB)
Name | Size | Download all |
---|---|---|
md5:47093d491ced836423337e451a6a0ccc
|
4.5 MB | Preview Download |
md5:a6943db158803f884f03d4d6a073a4ca
|
3.5 kB | Preview Download |
md5:9c6582629d1974173c0fbafb8db771e3
|
141.7 MB | Download |
md5:989712d379cbd0d25f697db69228478e
|
82 Bytes | Download |
md5:ddefc43626600f8e5f0f39281a657c2c
|
5.8 GB | Download |
md5:dbe988cebf9e3a977226179e660f877d
|
99 Bytes | Download |
md5:c54b2304763d3234cfa7ec604e4a1908
|
122.4 MB | Download |
md5:d2f5bed4cffa9dd162ccd6bf2ac26a81
|
89 Bytes | Download |
md5:9b5f403f1b018c3c444bd474e2497947
|
423.7 kB | Preview Download |
md5:7ea609dc584edc23f43d0c340e643970
|
85.8 kB | Preview Download |
md5:6c39b57703f7afe9bbe7ec2fbc316eaf
|
177.3 kB | Preview Download |
md5:fee9e15a20824c29aa95709c8b27af50
|
119.9 kB | Preview Download |
md5:70f3927ad54112de7e4bde043acefef7
|
72.6 kB | Preview Download |
md5:24a7e7ead320cf7671881a0f3d78bec6
|
119.1 kB | Preview Download |
md5:426d70b5ebb2b48cb790d8d34013026a
|
106.1 kB | Preview Download |
md5:c51d4a7ed8fd720efc57a90835025fad
|
250.3 kB | Preview Download |
md5:f5c73937c5e119c045ac2b132f894091
|
178.3 kB | Preview Download |
md5:381e1b8d678ea57c2315fec55833eed8
|
297.4 kB | Preview Download |
md5:76877726ad2058da3b8974bd61f3d6e6
|
224.6 kB | Preview Download |
md5:bc95a2791754851886477f3ea3a45ee5
|
150.6 kB | Preview Download |
md5:7099e888887d2616b5db8e7895174ab0
|
179.5 kB | Preview Download |
md5:80ea6e1c3605c4dcba350c95364fe48c
|
101.3 kB | Preview Download |
md5:ab1d4c6d82eea21fd9d27e0c134cf556
|
197.8 kB | Preview Download |
md5:1f7958ccfe9a5c2c270411238961a3d0
|
290.0 kB | Preview Download |
md5:b3406651ede9bce7cc3b553f66fe9116
|
43.6 MB | Preview Download |
md5:bbab4718e1139e29ff6a7de048ac4a6c
|
3.4 MB | Preview Download |
md5:7ecce9467fb19e0f9930ab01a42450f9
|
113.0 MB | Preview Download |
Additional details
Related works
- Is supplement to
- Journal article: 10.1093/bioinformatics/btab649 (DOI)