
Multi-scale simulations
Author: Lukas Breitwieser
In this tutorial we will show how BioDynaMo support multi-scale simulations. Multi-scale simulation means that
simulated processes happen in different time-scales---e.g. substance diffusion and neurite growth.

Let's start by setting up BioDynaMo notebooks.

In [1]:

We define a new standalone operation (https://biodynamo.org/docs/userguide/operation/) which only task is to
print the current simulation time step if it is executed.

In [2]:

In [3]:

Our initial model consists of one agent at origin.

In [4]:

Let's create a new instance of our class TestOp and add it to the scheduler.

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

struct TestOp : public StandaloneOperationImpl {

 BDM_OP_HEADER(TestOp);

 void operator()() override {

 auto* scheduler = Simulation::GetActive()->GetScheduler();

 auto* param = Simulation::GetActive()->GetParam();

 std::cout << "Processing iteration "

 << scheduler->GetSimulatedSteps()

 << " simulation time "

 << scheduler->GetSimulatedSteps() * param->simulation_time_step

 << std::endl;

 }

};

OperationRegistry::GetInstance()->AddOperationImpl(

 "test_op", OpComputeTarget::kCpu, new TestOp());

auto set_param = [](Param * param) {

 param->simulation_time_step = 2;

};

Simulation simulation("my-simulation", set_param);

auto* ctxt = simulation.GetExecutionContext();

ctxt->AddAgent(new SphericalAgent());

https://biodynamo.org/docs/userguide/operation/

In [5]:

Let's simulate 9 steps. We expect that op1 will be called each time step.

In [6]:

Operations have a frequency attribute which specifies how often it will be executed. An operation with frequency
one will be executed at every time step; an operation with frequency two every second, and so on.

In [7]:

This functionality can be used to set the frequency of different processes in an agent-based model.

Processing iteration 0 simulation time 0

Processing iteration 1 simulation time 2

Processing iteration 2 simulation time 4

Processing iteration 3 simulation time 6

Processing iteration 4 simulation time 8

Processing iteration 5 simulation time 10

Processing iteration 6 simulation time 12

Processing iteration 7 simulation time 14

Processing iteration 8 simulation time 16

Processing iteration 9 simulation time 18

Processing iteration 12 simulation time 24

Processing iteration 15 simulation time 30

auto* op1 = NewOperation("test_op");

auto* scheduler = simulation.GetScheduler();

scheduler->ScheduleOp(op1);

scheduler->Simulate(9);

op1->frequency_= 3;

scheduler->Simulate(9);

