
Randomize iteration order
Author: Lukas Breitwieser
In this tutorial we show how to randomize the order that BioDynaMo uses in each iteration to process the
agents.

Let's start by setting up BioDynaMo notebooks.

In [1]:

Let's create two helper functions:

AddAgents to add four agents to the simulation
print_uid which prints the uid of the given agent

In [2]:

We define an experiment which

1. takes a simulation object as input
2. adds four agents
3. calls print_uid for each agent
4. print a seperator so we can distinguish the output of the two different time steps
5. advances to the next time step
6. calls print_uid for each agent again

In [3]:

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

void AddAgents(ResourceManager* rm) {

 for (int i = 0; i < 4; ++i) {

 rm->AddAgent(new SphericalAgent());

 }

}

auto print_uid = [](Agent* a) {

 std::cout << a->GetUid() << std::endl;

};

void Experiment(Simulation* sim) {

 auto* rm = sim->GetResourceManager();

 AddAgents(rm);

 rm->ForEachAgent(print_uid);

 rm->EndOfIteration();

 std::cout << "-----------------" << std::endl;

 rm->ForEachAgent(print_uid);

}

The default behavior of BioDynaMo is to iterate over the agents in the order they were added (not taking multi-
threading and load balancing into account). Therefore, we expect to see the same order twice.

In [4]:

BioDynaMo also provides a wrapper called RandomizedRm , which, as the name suggests, randomizes the
iteration order after each iteration. It just takes two lines to add this functionality to the simulation.

In [5]:

Let's run our experiment again. This time with the simulation which has a randomized resource manager. We
expect two different orders.

In [6]:

0-0

1-0

2-0

3-0

0-0

1-0

2-0

3-0

0-0

1-0

2-0

3-0

2-0

3-0

0-0

1-0

Experiment(&simulation)

Simulation simulation("my-sim");

auto* rand_rm = new RandomizedRm<ResourceManager>();

simulation.SetResourceManager(rand_rm);

Experiment(&simulation)

