Supplementary Materials

This document provides additional information about the design and
implementation of BioDynaMo, use cases, and performance results.
Furthermore, future directions and supplementary files are explained.

1 Design and implementation

Figure 2 in the main manuscript introduced the different abstraction layers
of BioDynaMo. The following sections describe the missing low- and
high-level features, and provide more details about the model building
blocks.

1.1 Low-level features

1.1.1 Visualization

BioDynaMo currently uses ParaView (Ahrens er al., 2005) as a
visualization engine. There are two visualization modes, which we refer
to as live mode and export mode. With live mode, the simulation can be
visualized during runtime, whereas with export mode, the visualization
state is exported to file and can only be visualized post-simulation. Live
mode is a convenient approach to debug a simulation visually while it
is executed. However, this can slow down the simulation considerably if
used continuously. In export mode, the visualization state can be loaded
by the visualization package for post-simulation processing (slicing,
clipping, rendering, animating, etc.). BioDynaMo can visualize substance
concentrations and gradients (see Figure 2), and the geometry of the
supported agents.

Furthermore, it is possible to export any agent’s data members. This
information can then be used as input to ParaView filters, e.g., to highlight
elements based on a specific property. The export of additional data
members was used in Figure 2, for example, to color cells by their cell

type.

1.1.2 BioDynaMo notebooks

Jupyter notebooks (Kluyver ez al., 2016) is a widely used web application
to quickly prototype or demonstrate features of a software library. With
notebooks, it is possible to easily create a website with inline code snippets
that can be executed on-the-fly. ROOT expands these notebooks by offering
a C++ backend in addition to the default Python backend. This allows us to
provide a web interface to easily and quickly get started with BioDynaMo.
Users do not need to install any software packages; a recent web browser
is enough. It is also a convenient tool to interactively go through a demo or
tutorial, which opens up possibilities to use BioDynaMo for educational
purposes. BioDynaMo is the first agent-based simulation platform written
in C++ that offers such an interface. BioDynaMo notebooks have already
been successfully used to demonstrate and teach about pyramidal cell
growth and were well-received by high-school students and teachers
during CERN’s official teachers and students programs. Figure 1 shows
an example of how a BioDynaMo notebook looks. This example gives
a brief introduction to pyramidal cells and follows up with a step-by-
step explanation of how to simulate their growth with BioDynaMo.
Interactive visualizations in the browser give users quick feedback about
the simulation status. Lastly, tutorials written as BioDynaMo notebooks
can be executed as part of our continuous integration pipeline and ensure
that documentation stays in sync with the codebase. In Supplementary
Tutorial STO1—ST15 we use this feature to explain BioDynaMo to new
users.
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Pyramidal Cell Demo

Hello!In this demonstration we willsimulate a “pyramidal cel” with the simulation platform BioDynaMo. A
pyramidal cell is one of the many types of neurons that can be found in the human brain. Pyramidal cells
are excitatory cells mostly found in the cerebral cortex and the hippocampus, and are implicated in
cognitive functions. Pyramidal celis look fike the one shown in the image in the right (a pyramida cellfrom
the visual cortex in mouse).

Asyou body is cone shaped, wh forthis type of neuron, which is why
it eamed the name "pyramidal cell. These neurons are typically about 100 micrometer i length, but
some of the can grow up to a couple of centimeters.

Lets take a look at how we can simulate the development of a pyramidall cel,

In (3]: M auto set_param = [&](Param* param) {
paran->bound_space = truc;

paran->cache_neighbors = true;

Y
bdn: :neuroscience: : InitModule();

Now we can initalize the name and the

hat we just set
In (4]: M Sinulation sinulation("pyranidal cell", set_param);

In [26]: W VisualizeInNotebook(800, 400, "y:");

Fig. 1. BioDynaMo notebook. A convenient web interface to create and run simulations
in a step-by-step manner. The inlining of text and media makes it possible to provide extra
information. A few intermediary blocks have been removed to fit the final simulation output
on the screenshot.

1.1.3 Backup and restore

BioDynaMo uses ROOT to integrate the backup and restore functionality
transparently. This allows system failures to occur without losing valuable
simulation data. Without any user intervention, all simulation data can be
persisted to disk as system-independent binary files, called ROOT files,
and restored into memory after a failure occurs. The ROOT file format
is well-established and is the primary format for storing large quantities
(petabytes) of data in high-energy physics experiments, such as CERN.
To enable the backup and restore feature in BioDynaMo, one must simply
specify the file name of the backup file. Additionally, one can set the
interval at which a backup is performed. A low interval value ensures
a low amount of data loss whenever a failure occurs, but also increases
the incurred overhead for creating the backup files. The advised backup
interval depends on the duration of the simulation.

1.1.4 Software quality assurance

Compromising on software quality can have severe consequences that
can culminate in the retraction of published manuscripts (Miller, 2006).
Therefore, we put tremendous effort into establishing a rigorous
development workflow that follows industry best practices. Test-driven
development—a practice from agile development (Beck and Gamma,
2000)—is at the core of our solution. BioDynaMo has over 400 tests
distributed among unit, convergence, system, and installation tests. We
monitor test coverage of our unit tests with the tool kcov (Kagstrom,
2020), and currently cover 79.8% lines of code. For each change to our
repository (https://github.com/BioDynaMo/biodynamo), GitHub Actions
(https://github.com/features/actions) executes the entire test suite and,
upon success, updates the documentation on our website. Installation tests
are executed on each supported operating system and ensure that all demo
simulations run on a default system.

1.2 High-level features

1.2.1 Dynamic scheduling
In BioDynaMo the code that will be executed is controlled by behaviors
and operations. Behaviors can be attached to individual agents and thus



allow very fine-grained control. Agent operations are usually executed for
all agents (if no agent filters are specified). Both behaviors and operations
can be created, added, removed, and destroyed during a simulation.
This feature gives the user maximum flexibility to change the executed
simulation code over time (Supplementary Tutorial ST13).

1.2.2 Parameter management

BioDynaMo simplifies the definition of simulation parameters by
liberating the user from the burden to write code to parse parameter files
or command line arguments.

1.2.3 Parameter optimization

The epidemiology use case presented in the results section of the
main manuscript demonstrates how to define an experiment comprised
of multiple input parameters, and a user-defined error function. This
experiment definition is used in conjunction with the optimlib library
(https://www.kthohr.com/optimlib.html) to determine model parameters
that match the ground truth.

1.2.4 Space boundary conditions

BioDynaMo support three boundary conditions: (i) open, where the
simulation space grows to encapsulate all agents in the simulation, (ii)
closed, where artificial walls prevent agents from exiting the simulation
space, and (iii) toroidal, where agents that leave the space on one side, will
enter on the opposite side.

1.3 Model building blocks

In this section, we provide more details about the biological model
BioDynaMo currently implements. This model closely resembles the
principles from Cortex3D (Zubler and Douglas, 2009), but can be extended
orreplaced easily. Supplementary Tutorial ST15 for example demonstrates
how to replace the default mechanical force implementation with a user-
defined one. Table 1 lists the current agents, behaviors, and operations that
the current BioDynaMo installation contains.

1.3.1 Mechanical forces

Growing realistic cell and tissue morphologies requires the consideration
of mechanical interactions between agents. Therefore, BioDynaMo
examines if two agents collide with each other at every timestep. To
find all possible collisions, it is sufficient to evaluate neighbors in the
environment. Whenever two agents (e.g. a cell body or a neurite element)
overlap, a collision occurs. If a collision is detected, the engine calculates
the mechanical forces that act on them.

The mechanical force calculation between spheres and cylinders
follows the same approach as the implementation in Cortex3D (Zubler
and Douglas, 2009). Both in BioDynaMo and Cortex3D, the magnitude of
the force is computed based on (Pattana, 2006) and comprises a repulsive
and attractive component:
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where 0 indicates the spatial overlap between the two elements, and r
denotes a combined measure of the two radii:
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where the radii denote the radii of the interacting spheres or cylinder.

Eq 1 comprises the effects of the structural tension from the pressure
between the colliding membrane segments, and the attractive force due
to the cell adhesion molecules. The magnitudes of these two force
components depend upon the modifiable parameters k and . In the current
form, as in Cortex3D, these are set to 2 and 1, respectively. After the forces

have been determined, the agents change their 3D location depending on
the force resulting from all the mechanical interactions with neighbors.
More details about the implementation of the mechanical force, including
the force between neighboring neurite elements, can be found in (Zubler
and Douglas, 2009).

1.3.2 Extracellular diffusion
Signaling molecules, which differentiate and regulate cells, reach their
destination through diffusion (Gurdon and Bourillot, 2001). A well-studied
example of this process, called morphogen gradients, is the determination
of vein positions in the wing of Drosophila (Bosch et al., 2017).
BioDynaMo solves the partial differential equations that model the
diffusion of extracellular substances (Fick’s second law) with the discrete
central difference scheme (Smith er al., 1985). A grid with a variable
resolution is imposed on the simulation space. At each timestep, the
concentration value of each grid point is updated according to
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where u:‘J 1, is the concentration value on grid point (4, , k) at timestep
n, v is the diffusion coefficient, p is the decay constant, At is the duration
of one timestep, and Az, Ay, and Az are the distances between grid
points in the X, y, and z direction, respectively. The distances between the
grid points are inversely proportional to the resolution and determine the
accuracy of the solver.

In BioDynaMo, it is possible to define the diffusion behavior at the
simulation boundaries. In the default implementation, which we use for
our examples in the result section, substances diffuse out of the simulation
space.

In some cases, it is necessary to initialize substance concentrations
artificially to simplify a simulation. Therefore, BioDynaMo provides
predefined substance initializers (e.g. Gaussian) and accepts user-defined
functions for arbitrary distributions. We used this functionality, for
example, in the pyramidal cell growth simulation.

1.4 Code examples

In the main manuscript, Figure 3 depicts in an abstract way that
BioDynaMo’s software design is open for extension. With the three code
examples in Listing 1 to 4—taken directly from the presented use cases
and benchmarks—we want to emphasize how little code is required to add
new functionality.

struct SimParam : public ParamGroup {

BDM_PARAM_GROUP_HEADER (SimParam, 1);

uint64_t iterations = 100;

1
2
3 uint64_t cells_per_dim = 30;
4
5 Vi

Listing 1: Additional simulation parameters for the cell growth and division
benchmark.



Table 1. List of agents, events, and operations that BioDynaMo currently provides.

Description

Agents

Agent Agent is the base class for all agents in BioDynaMo. This class has a unique id that remains constant during the whole simulation
and a collection of behaviors that have been attached to this agent. Agent contains functions to manage behaviors, and to remove
itself from the simulation.

Spherical Agent SphericalAgent extends Agent and adds a spherical agent geometry.

Cell Cell extends Agent and represents a generic cell with a spherical shape. It includes attributes to describe its geometry, density, and
adherence. Cell provides member functions to change its volume, move it in space, calculate mechanical forces, and divide it into
two daughter cells. This cell division function creates a new daughter cell and distributes the volume of the mother cell according
to the volume ratio parameter. The position of the daughter cell is determined based on the division axis.

NeuronSoma NeuronSoma extends Cell. This class represents the cell body of a neuron and, like Cell, has a spherical shape. NeuronSoma has
a list of neurite elements that extend from the cell body together with their attachment points. NeuronSoma adds a function to
extend a new neurite element from the soma. This function takes two parameters: the diameter of the new neurite element, and the
orientation of the cylinder in spherical coordinates. Zubler and Douglas (2009) contains more details.

NeuriteElement NeuriteElement extends Agent and has a cylindrical shape with a proximal and distal end. A dendrite is modeled as a binary tree of
neurite elements that are internally connected with springs to transmit forces to its proximal connection. The proximal connection
can be a NeuriteSoma or a NeuriteElement. This class contains attributes to describe the cylindrical geometry, the spring, pointers
to its proximal and distal connections, density, and adherence. A NeuriteElement can elongate, retract, split, branch, bifurcate, and
extend a new side neurite. The following list describes these functions in more detail.

o Split neurite element. This function splits a neurite element into two segments. The neurite element whose split neurite element
function was called becomes the distal one. The new neurite element will be the proximal one.

e Extend side neurite. This function adds a side neurite, if one of the distal connections is empty.

e Bifurcate. This function creates two new neurite elements and assigns them to the distal connections. This function can only
be called for terminal neurite segments because both connections must be empty.

e Branch. This function splits the current neurite element into two elements and adds a new side branch at the proximal segment.
It is, therefore, a combination of split neurite element and extend side neurite.

Zubler and Douglas (2009) contains more details.

Behaviors

Chemotaxis This behavior moves agents along the diffusion gradient (from low concentration to high).

Secretion This behavior increases the substance concentration at the position of the agent.

GrowthDivision This behavior grows cells to a specific size and divides them if they exceed the threshold.

GeneRegulation This behavior calculates protein concentrations which are defined as differential equations.

StatelessBehavior This behavior reduces the amount of code that has to be written for behaviors without attributes.

Agent operations
BehaviorOp
BoundSpaceOp

DiscretizationOp

MechanicalForcesOp

This operation runs all behaviors which are attached to the agent.

This operation enforces the space boundary condition (see Section 1.2.4) which can be open, closed or toroidal.

This operation calls the agent’s discretization function. NeuriteElement uses this function to split itself if it becomes too long, or
merge with another segment if it is too short.

This operation calls the agent’s calculate displacement function and moves the agent accordingly. The calculate displacement
function contains the implementation how an agent moves based on all forces that act on it.

Standalone operations

DiffusionOp This operation calls the update function of all substances in the simulation.

UpdateEnvironmentOp  This operation calls the update function of the environment algorithm.

UpdateTimeSeriesOp  This operation calls the update function of the TimeSeries object which collects relevant data from the current iteration which can
be analysed at the end of the simulation.

VisualizationOp This operation updates the live visualization or generates visualization files for later analysis.

2 Results tumor cell behavior as used in the oncology use case. The epidemiology

2.1 Use cases

use case adds three new behaviors which are depicted in Algorithm 3
(infection), Algorithm 4 (recovery), and Algorithm 5 (random movement).

The behavior governing apical and basal dendrite growth (neuroscience use
case) is outlined in Algorithm 1. Algorithm 2 shows pseudocode for the



/// Possible states.

1

2 enum State { kSusceptible, kInfected, kRecovered };

3

4 class Person : public Cell {

5 BDM_AGENT_HEADER (Person, Cell, 1);

6

7 public:

8 Person() {}

9 explicit Person(const Double3& position) : Base (position) {}
10 virtual ~Person() {}

11

12 /// This attribute stores the current state of the person.
13 int state_ = State::kSusceptible;

14 }i

Listing 2: New agent class used in the epidemiology use case.

struct Recovery : public Behavior {

1

2 BDM_BEHAVIOR_HEADER (Recovery, Behavior, 1);

3

4 Recovery () (}

5

6 void Run(Agent* a) override |

7 auto* person = bdm_static_cast<Person*>(a);

8 if (person->state_ == kInfected) {

9 auto* sim = Simulation::GetActive();

10 auto* random = sim->GetRandom();

11 auto* sparam = sim->GetParam()->Get<SimParam>();
12 if (random->Uniform(0, 1) <= sparam->recovery_probability) {
13 person->state_ = State::kRecovered;

14 b

15 }

16 }

17 ti

Listing 3: New behavior used in the epidemiology use case.

Model parameters can be found in Table 2 for the neuroscience use
case, Table 3 for the oncology use case, and Table 4 for the epidemiology

use case.

2.2 Performance

In this section, we provide additional information about our performance
evaluation. Table 5 details the experimental setup that we used for
our benchmarks and Table 6 lists the measured runtime and memory
consumptions on these systems.

Cell growth and division benchmark. The starting condition of this
simulation was a 3D grid of cells. These cells were programmed to grow
to a specific diameter and divide afterward. This simulation had high
cell density and slow-moving cells. This simulation covered mechanical
interaction between spherical cells, biological behavior, and cell division.

Soma clustering benchmark. The goal of this model was to cluster
two types of cells that are initially randomly distributed. These cells
are represented in red and blue in Figure 2A and B. Each cell type
secreted a specific extracellular substance which attracted homotypic
cells. Substances diffused through the extracellular matrix following
Eq 3. We modeled cell processes with two behaviors, ran in sequence:
substance secretion (Algorithm 6) and chemotaxis (Algorithm 7). We set
the parameter secretion_quantitytoland gradient_weight
to 0.75. During the simulation, cell clusters formed depending on their
type. The final simulation state after 6000 time steps is shown in Figure 2B.
Clusters were associated with non-homogeneous extracellular substance
distributions, as shown in Figure 2C and Figure 3. Besides being used as
a benchmark, this example demonstrates the applicability of BioDynaMo
for modeling biological systems, including the dynamics of chemicals
such as oxygen or growth factors. The simulation consisted of 68 lines
of C++ code. Table 6 shows the performance on different systems. There
are three main differences comparing this simulation with the previous cell

1 // File: pyramidal_cell.h

2 #ifndef PYRAMIDAL_CELL_H_

3 #define PYRAMIDAL CELL_H_

4

5 #include "biodynamo.h"

6 #include "neuroscience/neuroscience.h"
7

8 namespace bdm {

9

10 enum Substances { kApical, kBasal };

12 struct ApicalDendriteGrowth : public Behavior {

13 BDM_BEHAVIOR_HEADER (ApicalDendriteGrowth, Behavior, 1);

14 ApicalDendriteGrowth () { AlwaysCopyToNew(); }

15 virtual ~ApicalDendriteGrowth() {}

16 void Initialize (const NewAgentEventé& event) override {

17 Base::Initialize (event);

18 can_branch_ = false;

19 }

20 void Run (Agent* agent) override { /* omitted */ }

21 private:

22 bool init_ = false;

23 bool can_branch_ = true;

24 DiffusionGrid* dg_guide_ = nullptr;

25 }i

26

27 struct BasalDendriteGrowth : public Behavior {

28 BDM_BEHAVIOR_HEADER (BasalDendriteGrowth, Behavior, 1);

29 BasalDendriteGrowth() { AlwaysCopyToNew(); }

30 virtual ~BasalDendriteGrowth() {}

31 void Run(Agent* agent) override { /* omitted */ }

32 private:

33 bool init_ = false;

34 DiffusionGrid* dg_guide_ = nullptr;

35 1i

36

37 inline void AddInitialNeuron (const Double3& position) {

38 auto* soma = new neuroscience::NeuronSoma (position);

39 soma->SetDiameter (10);

40 Simulation::GetActive () ->GetResourceManager () ->AddAgent (soma) ;
41

42 auto* apical_dendrite = soma->ExtendNewNeurite ({0, 0, 1});
43 auto* basal_dendritel = soma->ExtendNewNeurite ({0, 0, -1});
44 auto* basal_dendrite? = soma->ExtendNewNeurite ({0, 0.6, -0.8});
45 auto* basal_dendrite3 = soma->ExtendNewNeurite ({0.3, -0.6, -0.8});
46

47 apical_dendrite->AddBehavior (new ApicalDendriteGrowth());
48 basal_dendritel->AddBehavior (new BasalDendriteGrowth());

49 basal_dendrite2->AddBehavior (new BasalDendriteGrowth());

50 basal_dendrite3->AddBehavior (new BasalDendriteGrowth());

51 }

52

53 /// Create and initialize substances for neurite attraction
54 inline void CreateExtracellularSubstances (const Param* p) {
55 using MI = Modellnitializer;

56 MI::DefineSubstance (kApical, "substance_apical™, 0, 0,

57 p->max_bound / 80);

58 MI::DefineSubstance (kBasal, "substance_basal", 0, 0,

59 p->max_bound / 80);

60 // initialize substance with gaussian distribution

61 auto a_initializer = GaussianBand (p->max_bound, 200, Axis::kZAxis);
62 auto b_initializer = GaussianBand (p->min_bound, 200, Axis::kZAxis);
63 MI::InitializeSubstance (kApical, a_initializer);

64 MI::InitializeSubstance (kBasal, b_initializer);

65 }

67 inline int Simulate (int argc, const char** argv) {

68 neuroscience::InitModule () ;

69 Simulation simulation(argc, argv);

70 AddInitialNeuron ({150, 150, 0});

71 CreateExtracellularSubstances (simulation.GetParam());
72 simulation.GetScheduler () ->Simulate (500) ;
73 return 0;

74 }

75

76 )} // namespace bdm

77 #endif // PYRAMIDAL CELL_H_

78 /7

79 // File: pyramidal_cell.cc
80  #include "pyramidal_cell.h"
81  int main(int c, const char** v) ( retura bdm::Simulate(c, v); }

Listing 4: Pyramidal cell growth simulation code. This example shows
the required C++ code to simulate the growth of a single pyramidal cell
as shown in Figure 4A in the main manuscript. All classes and functions
which are not defined in this example are provided by BioDynaMo. Only
the body of the two behavior’s Run methods has been ommited, but are
provided in Supplementary File S3 and Algorithm 1.



growth and division simulation. First, this simulation covered extracellular
diffusion. Second, cells moved more rapidly. Third, the number of cells
remained constant during the simulation.

B

Fig. 2. Soma clustering simulation. This simulation contains two types of cells and
two extracellular substances. Each cell secretes a substance and moves into the direction
of the substance gradient. Cells are distributed randomly in the beginning (A) and
form clusters during the simulation. (B) Cell clusters at the end of the simulation.
(C) Substance concentrations at the end of the simulation. A video is available at
SV4-soma-clustering.mp4.

Pyramidal cell growth benchmark. We used the pyramidal cell model
from the neuroscience use case as a building block (see Figure 4 in
the main manuscript). The simulation started with a 2D grid of initial
neurons on the z-plane and started growing them. This simulation
has three distinctive features. First, activity was limited to a neurite
growth front, while the rest of the simulation remained static. This
introduced a load imbalance for parallel execution. Second, the neurite
implementation modified neighboring agents. Hence, synchronization
was required between multiple threads to ensure correctness. Third, the
simulation had only static substances, i.e., substance concentrations and
gradients did not change over time.

3 Availability and future directions

BioDynaMo is an open-source project under the Apache 2.0 license and
can be found on Github (https://github.com/BioDynaMo/biodynamo). The
documentation is split into three parts: API reference, user guide, and
developer guide. Furthermore, a Slack channel is available for requesting
assistance or guidance from the BioDynaMo development team.

BioDynaMo officially supports the following operating systems:
Ubuntu (18.04, 20.04), CentOS 7, and macOS (10.15, 11.1). We test
BioDynaMo on these systems and provide prebuilt binaries for third party
dependencies: ROOT and ParaView.

Fig. 3. Soma clustering cross section. Cell positions coincide with regions of high
substance concentration. The first row shows substance concentrations and cells, while
the second row shows substance concentrations only. Columns show cell type with the
corresponding substance.

All of the results presented in the paper can be reproduced following
the instructions in Supplementary Information.

By designing BioDynaMo in a modular and extensible way, we laid
the foundation to create new functionalities easily. We encourage the life
science community to contribute their developments back to the open-
source codebase of BioDynaMo. Over time, the accumulation of all these
contributions will form the BioDynaMo open-model library, as shown
in Figure 4. This library will help scientists accelerate their research by
providing the required building blocks (agents, biological behavior, etc.)
for their simulation. Currently, we collect these contributions in our Github
repository (https://github.com/BioDynaMo/biodynamo).

4 Supporting information

SF2-reproduce-results.md Instructions on how to reproduce all results
presented in this paper.

SF3-code.tar.gz Codebase to reproduce all results presented in this
paper. This file contains all code necessary to reproduce performance
results, plots, visualizations, and videos shown in this paper. Furthermore,
it contains more details about the hardware and software configuration of
the different systems described in Table 5.

SF4-bdm-publication-image.tar.gz Docker image to reproduce all
results presented in this paper. We provide a Docker image to simplify
the process of executing our simulations and benchmarks and to guarantee
long-term reproducibility. The only requirement that users must install is
a recent version of the Docker engine. All other prerequisites are already
provided in the ready-to-use, self-contained Docker image. This approach
does not rely on content hosted somewhere on the internet that might
become unavailable in the future.

SFS5-raw-results.tar.gz Raw results. This archive contains all raw results
from the simulations and benchmarks shown in this paper.

SVI1-single-pyramidal-cell. mp4 Single pyramidal cell growth simulation,
as shown in Figure 4A in the main manuscript.

SV2-large-scale-neuronal-development.mp4 Large-scale pyramidal cell
growth simulation, as shown in Figure 4C in the main manuscript.

SV3-tumor-spheroid.mp4 Tumor spheroid growth simulation, as shown
in Figure 5B in the main manuscript.

SV4-soma-clustering.mp4. Soma clustering simulation, as shown in
Figure 2.

STO1—ST15*. Fifteen tutorials to demonstrate various aspects of
BioDynaMo.
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Algorithm 1: Apical and basal dendrite growth.

input: neurite, growth_factor, diameter_threshold,

diameter_threshold_two, growth_speed,
branching_probability, old_direction_weight,
randomness_weight, gradient_weight, shrinkage,
can_branch

1 diameter <— neurite.GetDiameter ();

2 if diameter > diameter_threshold then

3 | old_direction < neurite.GetDirection ();

4 | pos < neurite.GetPosition ();

5 | gradient <—

growth_factor.GetNormalizedGradient (pos);

6 | direction <— old_direction X old_direction_weight +

gradient X gradient_weight + RandomUniform3 (-1, 1) X

randomness_weight;

7 | neurite.Extend (growth_speed, direction) ;

8 | neurite.SetDiameter (diameter- shrinkage) ;

9 | if neurite.IsApical () then

10 if can_branch and neurite.IsTerminal () and

diameter < diameter_threshold_two and

RandomUniform (0, I) < branching_probability then

11 branching_direction <—
CalculateBranchingDirection (neurite);

12 neurite.Branch (branching_direction) ;

13 end

14 | end

15 | elseif RandomUniform (0, /) < branching_probability
then

16 neurite.Bifurcate ();

17 | end

18 end

Table 2. Model parameters for the pyramidal cell growth simulation.

Parameter Apical dendrite Basal dendrite
Diameter threshold 0.575 0.75

Diameter threshold two 0.55

Old direction weight 4 6

Gradient weight 0.06 0.03
Randomness weight 0.3 0.4

Growth speed 100 50

Shrinkage 0.00071 0.00085
Branching probability  0.038 0.006




Algorithm 2: Cancer cell behavior.

Algorithm 5: Random movement behavior.

input: cell, minimum_cell_age, death_probability,

displacement_rate, growth_speed, division_probability

1 random_vector < RandomUniform3 (-1, 1) ;

2 brownian < random_vector = random_vector.L.2Norm () ;

3 cell.UpdatePosition (brownian X displacement_rate) ;

4 if age >= minimum_cell_age and

RandomUniform (0, I) < death_probability then

5 cell.LRemoveFromSimulation ();

6 return;

7 end

8 age <— age + 1;

9 if cell.GetDiameter < max_diameter then

10 ‘ cell.IncreaseVolume (growth_speed) ;

11 else if RandomUniform (0, /) < division_probability then

12 ‘ cell.Divide ();

13 end

input: person, speed, max_bound
1 position < person.GetPosition();
2 movement < RandomUniform3 (-1, /) .L2Norm();
3 new_position <— position + movement X speed;
4 for each el in new_position do
5 | el + £Mod (el, max_bound) ;

6 | if el < O then

7 el < max_bound + el;
8 | end

9 end

10 person.SetPosition (new_position) ;

Table 4. Model parameters for the epidemiological use case.
Table 3. Model parameters for the tumor spheroid growth simulations.

Parameter [dimension] Measles Seasonal Influenza

Parameter [dimensions] 2000 4000 8000
cells/well [ (analytical solution) 0.06719 0.01321

7 (analytical solution) 0.00521 0.01016
Cell growth rate [pzm3/h] 42.0 35.0 29.9 . .

Time step interval [h] 1 1
Minimum cell age to apoptosis [h] 87 87 87 .

Number of time steps 1000 2500
Division probability 0.0215 0.0215 0.0215 L .

Cubic simulation space length [m] 100 215
Cell death probability 0.033 0.033 0.033 . .

Initial number of susceptible persons 2000 20000
Maximum cell speed [pm/h] 1.0 0.9 0.2 . .

Initial number of infected persons 20 200
Cell-ECM adherence 1.8 1.8 1.8 R .

Infection radius [m] 3.24179 3.2123

coefficient [dimensionless] . .

Infection probability 0.28510 0.04980
Random cell movement 0.005 0.005 0.0005 .

Recovery probability 0.00521 0.01016

= displacement rate [pm/h]

Algorithm 3: Infection behavior.

input: person, environment, infection_probability,
infection_radius

1 if person.GetState () == susceptible and
RandomUniform(0,/) < infection_probability then
2 | neighbors
< environment.GetNeighbors (infection_radius) ;
3 | for each neighbor in neighbors do
4 if neighbor.Get State () == infected then
5 person.Set State (infected) ;
6 end
7 | end
s end

Max movement per time step [m] 5.78594 4.2942

Algorithm 6: Soma clustering substance secretion.

input: cell, diffusion_grid, secretion_quantity
1 pos < cell.GetPosition();
2 diffusion_grid.IncreaseConcentrationBy (pos,
secretion_quantity) ;

Algorithm 4: Recovery behavior.

input: person, recovery_probability
1 if person.Get State () == infected and
RandomUniform(0,/) < recovery_probability then
2 | person.SetState (recovered) ;
3 end

Algorithm 7: Soma clustering chemotaxis.

input: cell, diffusion_grid, gradient_weight
1 pos <— cell.GetPosition();
2 grad < diffusion_grid.GetNormalizedGradient (pos);
3 cell.UpdatePosition (grad xgradient_weight) ;




Table 5. Experimental setup. Main parameters of the systems that we used to run the benchmarks of this paper. SF3-code.tar.gz contains more details.

System Main memory CPU/GPU oS

A 504 GB

Server with four Intel(R) Xeon(R) E7-8890 v3 CPUs @ 2.50GHz with a total of 72 physical Cent0S 7.9.2009
cores, two threads per core and four NUMA nodes.

B 1008 GB
Server with two Intel(R) Xeon(R) Gold 6130 CPUs @ 2.10GHz with 16 physical cores,

C 191 GB two threads per core, and two NUMA nodes. CentOS 7.7.1908
One NVidia Tesla V100 SXM2 GPU with 32 GB memory.
Dell Latitude 7480 Laptop from 2017.

D 16 GB One Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz with two physical cores and two

threads per core. Ubuntu 20.04.1 LTS

One Intel HD Graphics 620 GPU with 64 MB eDRAM.

Table 6. Performance data. The values in column “Agents" and “Diffusion volumes" are taken from the end of the simulation. Runtime measures the wall-clock

time to simulate the number of iterations. It excludes the time for simulation setup and visualization.

Simulation Agents  Diffusion Iterations System  Physical Runtime  Memory
volumes (Table 5) CPUs
Neuroscience use case
Single (Figure 4A in the main manuscript) 1494 250 500 A 1 0.16s 382 MB
D 1 0.12's 479 MB
Large-scale (Figure 4C in the main manuscript) 9 036 986 65 536 500 A 72 35s 6.47 GB
D 2  11min28s 5.37 GB
Very-large-scale 1018644 154 5606 442 500 B 72 1 h 24 min 438 GB
Oncology use case (Figure 5 in the main manuscript)
2000 initial cells 4177 0 312 A 1 1.05s 382 MB
D 1 0.832's 480 MB
4000 initial cells 5341 0 312 A 1 1.76 s 382 MB
D 1 1.34s 480 MB
8000 initial cells 7861 0 288 A 1 327s 384 MB
D 1 2.60's 482 MB
Large-scale 1 000 3925 0 288 A 72 1min42s 7.42 GB
D 2 43min56s  5.84GB
Very-large-scale 986 054 868 0 288 B 72 6h 21 min 604 GB
Epidemiology use case (Figure 6C in the main manuscript)
Measles 2010 0 1000 A 1 0.53 s 381 MB
D 1 0.42's 479 MB
Seasonal Influenza 20 200 0 2500 A 1 1641s 383 MB
D 1 16.40 s 479 GB
Medium-scale (measles) 100 500 0 1000 A 72 1.36's 1GB
Large-scale (measles) 10 050 000 0 1000 A 72 59.19s 5.87 GB
D 2 19minl18s 541GB
Very-large-scale (measles) 1 005 000 000 0 1000 B 72 2 h 0 min 495 GB
Soma clustering (Figure 2) 32000 1240000 6 000 A 72 1291s 1.02 GB
D 2 2min7s 522 MB
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