
Environment search
Author: Lukas Breitwieser

In this tutorial we will show how to execute a function for each neighbor of an agent.

Let's start by setting up BioDynaMo notebooks.

In [1]:

We create three agents in a row along the x-axis with identical y and z values.

In [2]:

We finalize the initialization and update the environment so it can be used later.
Please not that this is usually
done automatically inside Scheduler::Simulate .

INFO: Created simulation object 'simulation' with UniqueName='simulati

on'.

%jsroot on

gROOT->LoadMacro("${BDMSYS}/etc/rootlogon.C");

auto* ctxt = simulation.GetExecutionContext();

auto* a0 = new SphericalAgent({10, 0, 0});

auto* a1 = new SphericalAgent({20, 0, 0});

auto* a2 = new SphericalAgent({30, 0, 0});

a0->SetDiameter(11);

a1->SetDiameter(11);

a2->SetDiameter(11);

ctxt->AddAgent(a0);

ctxt->AddAgent(a1);

ctxt->AddAgent(a2);

In [3]:

Let's define the function that we want to execute for each neighbor. It prints the unique id of the neighbor and its
distance from the querying agent.

In [4]:

The agents have the following ids (in order of increasing x-value)
0-0, 1-0, 2-0

We start by executing print_id_distance for the first agent. We ask for all neighbors within distance 101.
Therefore the function should be executed for the agent in the middle with id 1-0

In [5]:

Let's repeat the experiment for the middle agent. We expect to see two lines for the left and right neighbor.

In [6]:

Lastly, we want to execute the function print_id_distance for all neighbors of the righ-most agent. We
expect to see one line printing the middle agent as neighbor (1-0)

Neighbor 1-0 with distance: 10

Neighbor 0-0 with distance: 10

Neighbor 2-0 with distance: 10

simulation.GetScheduler()->FinalizeInitialization();

simulation.GetEnvironment()->Update();

VisualizeInNotebook();

auto print_id_distance = L2F([](Agent* a, double squared_distance) {

 std::cout << "Neighbor " << a->GetUid() << " with distance: "

 << std::sqrt(squared_distance) << std::endl;

});

ctxt->ForEachNeighbor(print_id_distance, *a0, 101);

ctxt->ForEachNeighbor(print_id_distance, *a1, 101);

In [7]:

Neighbor 1-0 with distance: 10

ctxt->ForEachNeighbor(print_id_distance, *a2, 101);

