Published April 19, 2021 | Version 1
Journal article Open

Finite difference magnetoelastic simulator

  • 1. Departement Materiaalkunde, SIEM, KU Leuven, Leuven, 3001, Belgium
  • 2. Departement Vastestofwetenschappen, DyNaMat, Universiteit Gent, Gent, 9000, Belgium
  • 3. Departement Fysica, Universiteit Antwerpen, Antwerpen, 2000, Belgium
  • 4. Imec, Leuven, 3001, Belgium


We describe an extension of the micromagnetic finite difference simulation software MuMax3 to solve elasto-magneto-dynamical problems. The new module allows for numerical simulations of magnetization and displacement dynamics in magnetostrictive materials and structures, including both direct and inverse magnetostriction. The theoretical background is introduced, and the implementation of the extension is discussed. The magnetoelastic extension of MuMax3 is freely available under the GNU General Public License v3.



Files (1.1 MB)

Name Size Download all
1.1 MB Preview Download

Additional details


  • Gallagher WJ, Parkin SSP (2006). Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J Res Devel. doi:10.1147/rd.501.0005
  • Chappert C, Fert A, Van Dau FN (2007). The emergence of spin electronics in data storage. Nat Mater. doi:10.1038/nmat2024
  • Dieny B, Goldfarb RB, Lee KJ (2016). Introduction to Magnetic Random-Access Memory. doi:10.1002/9781119079415
  • Antonyan A, Pyo S, Jung H (2018). Embedded MRAM macro for eFlash replacement. 2018 IEEE Intern Symp Circ Syst (ISCAS). doi:10.1109/ISCAS.2018.8351201
  • Gallagher WJ, Chien E, Chiang TW (2019). Recent progress and next directions for embedded MRAM technology. 2019 Symposium on VLSI Technology. doi:10.23919/VLSIT.2019.8776547
  • Dieny B, Prejbeanu IL, Garello K (2020). Opportunities and challenges for spintronics in the microelectronics industry. Nat Electron. doi:10.1038/s41928-020-0461-5
  • Stamps RL, Breitkreutz S, Åkerman J (2014). The 2014 magnetism roadmap. J Phys D Appl Phys. doi:10.1088/0022-3727/47/33/333001
  • Chumak AV, Vasyuchka VI, Serga AA (2015). Magnon spintronics. Nat Phys. doi:10.1038/nphys3347
  • Sander D, Valenzuela SO, Makarov D (2017). The 2017 magnetism roadmap. J Phys D Appl Phys. doi:10.1088/1361-6463/AA81A1
  • Puebla J, Kim J, Kondou K (2020). Spintronic devices for energy-efficient data storage and energy harvesting. Commun Mater. doi:10.1038/s43246-020-0022-5
  • Hirohata A, Yamada K, Nakatani Y (2020). Review on spintronics: principles and device applications. J Magn Magn Mater. doi:10.1016/j.jmmm.2020.166711
  • Bandyopadhyay S, Cahay M (2016). Introduction to Spintronics.
  • Freitas PP, Ferreira R, Cardoso S (2016). Spintronic sensors. Proc IEEE. doi:10.1109/JPROC.2016.2578303
  • Zheng C, Zhu K, de Freitas SC (2019). Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans Mag. doi:10.1109/TMAG.2019.2896036
  • Khitun A, Wang KL (2011). Non-volatile magnonic logic circuits engineering. J Appl Phys. doi:10.1063/1.3609062
  • Nikonov DE, Young IA (2014). Benchmarking spintronic logic devices based on magnetoelectric oxides. J Mater Res. doi:10.1557/jmr.2014.243
  • Nikonov DE, Young IA (2015). Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J Explor Solid-State Computat Dev Circ. doi:10.1109/JXCDC.2015.2418033
  • Manipatruni S, Nikonov DE, Young IA (2018). Beyond CMOS computing with spin and polarization. Nat Phys. doi:10.1038/s41567-018-0101-4
  • Mahmoud A, Ciubotaru F, Vanderveken F (2020). Introduction to spin wave computing. J Appl Phys. doi:10.1063/5.0019328
  • Fiebig M (2005). Revival of the magnetoelectric effect. J Phys D Appl Phys. doi:10.1088/0022-3727/38/8/R01
  • Martin LW, Crane SP, Chu YH (2008). Multiferroics and magnetoelectrics: thin films and nanostructures. J Phys Condens Matter. doi:10.1088/0953-8984/20/43/434220
  • Vaz CAF, Hoffman J, Ahn CH (2010). Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater. doi:10.1002/adma.200904326
  • Lawes G, Srinivasan G (2011). Introduction to magnetoelectric coupling and multiferroic films. J Phys D Appl Phys. doi:10.1088/0022-3727/44/24/243001
  • Srinivasan G, Priya S, Sun N (2015). Composite Magnetoelectrics: Materials, Structures, and Applications.
  • Eerenstein W, Mathur ND, Scott JF (2006). Multiferroic and magnetoelectric materials. Nature. doi:10.1038/nature05023
  • Cheong SW, Mostovoy M (2007). Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. doi:10.1038/nmat1804
  • Béa H, Gajek M, Bibes M (2008). Spintronics with multiferroics. J Phys Cond Matter. doi:10.1088/0953-8984/20/43/434221
  • Martin LW, Ramesh R (2012). Multiferroic and magnetoelectric heterostructures. Acta Mater. doi:10.1016/j.actamat.2011.12.024
  • Spaldin NA, Ramesh R (2019). Advances in magnetoelectric multiferroics. Nat Mater. doi:10.1038/s41563-018-0275-2
  • Priya S, Islam R, Dong S (2007). Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram. doi:10.1007/s10832-007-9042-5
  • Nan CW, Bichurin MI, Dong S (2008). Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys. doi:10.1063/1.2836410
  • Srinivasan G (2010). Magnetoelectric composites. Ann Rev Mater Res. doi:10.1146/annurev-matsci-070909-104459
  • Ma J, Hu J, Li Z (2011). Recent Progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater. doi:10.1002/adma.201003636
  • Liu M, Sun NX (2014). Voltage control of magnetism in multiferroic heterostructures. Philos Trans A Math Phys Eng Sci. doi:10.1098/rsta.2012.0439
  • Bichurin MI, Petrov VM, Averkin SV (2010). Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J Appl Phys. doi:10.1063/1.3313919
  • Bichurin MI, Petrov VM, Averkin SV (2010). Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: magnetic and magnetoacoustic resonance ranges. J Appl Phys. doi:10.1063/1.3313920
  • Sander D (1999). The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys. doi:10.1088/0034-4885/62/5/204
  • Bichurin M, Petrov V (2014). Modeling of Magnetoelectric Effects in Composites. doi:10.1007/978-94-017-9156-4
  • Gurevich AG, Melkov GA (1996). Magnetization Oscillations and Waves. doi:10.1201/9780138748487
  • Bichurin MI, Kornev IA, Petrov VM (2001). Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Phys Rev B. doi:10.1103/PhysRevB.64.094409
  • Duflou R, Ciubotaru F, Vaysset A (2017). Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides. Appl Phys Lett. doi:10.1063/1.5001077
  • Tierno D, Ciubotaru F, Duflou R (2018). Strain coupling optimization in magnetoelectric transducers. Microelectron Engin. doi:10.1016/j.mee.2017.11.008
  • Vanderveken F, Ahmad H, Heyns M (2020). Excitation and propagation of spin waves in non-uniformly magnetized waveguides. J Phys D Appl Phys. doi:10.1088/1361-6463/abb2be
  • Peng RC, Hu JM, Momeni K (2016). Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. Sci Rep. doi:10.1038/srep27561
  • Bhattacharya D, Al-Rashid MM, D'Souza N (2017). Incoherent magnetization dynamics in strain mediated switching of magnetostrictive nanomagnets. Nanotechnology. doi:10.1088/0957-4484/28/1/015202
  • D'Souza N, Fashami MS, Bandyopadhyay S (2016). Experimental clocking of nanomagnets with strain for ultralow power Boolean logic. Nano Lett. doi:10.1021/acs.nanolett.5b04205
  • Li X, Carka D, Liang CY (2015). Strain-mediated 180° perpendicular magnetization switching of a single domain multiferroic structure. J Appl Phys. doi:10.1063/1.4923350
  • Liang CY, Keller SM, Sepulveda AE (2014). Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—analysis. J Appl Phys. doi:10.1063/1.4896549
  • Donahue MJ, Porter DG (1999). OOMMF User's Guide, Version 1.0. doi:10.6028/NIST.IR.6376
  • (null). OOMMF module YY_MEL.
  • Yahagi Y, Harteneck B, Cabrini S (2014). Controlling nanomagnet magnetization dynamics via magnetoelastic coupling. Phys Rev B. doi:10.1103/PhysRevB.90.140405
  • Vansteenkiste A, Leliaert J, Dvornik M (2014). The design and verification of MuMax3. AIP Adv. doi:10.1063/1.4899186
  • Lepadatu S (2020). Boris computational spintronics—high performance multi-mesh magnetic and spin transport modeling software. J Appl Phys. doi:10.1063/5.0024382
  • Liang CY, Keller SM, Sepulveda AE (2014). Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Nanotechnology. doi:10.1088/0957-4484/25/43/435701
  • Chen C, Barra A, Mal A (2017). Voltage induced mechanical/spin wave propagation over long distances. Appl Phys Lett. doi:10.1063/1.4975828
  • Yao Z, Tiwari S, Lu T (2019). Modeling of multiple dynamics in the radiation of bulk acoustic wave antennas. IEEE J Multiscale Multiphys Comput Techn. doi:10.1109/JMMCT.2019.2959596
  • Xiao Z, Conte RL, Chen C (2018). Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Sci Rep. doi:10.1038/s41598-018-23020-2
  • Kumar RS, Jayabal K (2019). Micromechanically motivated constitutive model embedded in two-dimensional polygonal finite element framework for magnetostrictive actuators. J Appl Phys. doi:10.1063/1.5093808
  • Wang JJ, Yang TN, Zorn JA (2019). Strain anisotropy and magnetic domain structures in multiferroic heterostructures: high-throughput finite-element and phase-field studies. Acta Mater. doi:10.1016/j.actamat.2019.06.043
  • Elakkiya VS, Subhani SM, Arockiarajan A (2019). A phenomenological approach to study the nonlinear magnetoelectric (ME) response of ME composites. Smart Mater Struct. doi:10.1088/1361-665X/ab5332
  • Stampfli R, Newacheck S, Youssef G (2021). Fully-coupled computational modeling of the dynamic response of 1-3 multiferroic composite structures. Int J Mech Sci. doi:10.1016/j.ijmecsci.2020.106086
  • Peng RC, Hu JM, Chen LQ (2017). On the speed of piezostrain-mediated voltage-driven perpendicular magnetization reversal: a computational elastodynamics-micromagnetic phase-field study. NPG Asia Mater. doi:10.1038/am.2017.97
  • du Trémolet de Lacheisserie E (1993). Magnetostriction Theory and Applications of Magnetoelasticity.
  • Chikazumi S (1997). Physics of Ferromagnetism.
  • O'Handley RC (2000). Modern Magnetic Materials: Principles and Applications.
  • Graff KF (1975). Wave Motion in Elastic Solids.
  • Achenbach JD (1973). Wave Propagation in Elastic Solids.
  • (null). The documentation of the MuMax3 script language.
  • Leliaert J, Mulkers J, De Clercq J (2017). Adaptively time stepping the stochastic Landau-Lifshitz-Gilbert equation at nonzero temperature: implementation and validation in MuMax3. AIP Adv. doi:10.1063/1.5003957
  • Venkat G, Fangohr H, Prabhakar A (2018). Absorbing boundary layers for spin wave micromagnetics. J Magn Magn Mater. doi:10.1016/j.jmmm.2017.06.057
  • Vanderveken F, Mulkers J, Leliaert J (2021). Confined magnetoelastic waves in thin waveguides. Phys Rev B. doi:10.1103/PhysRevB.103.054439