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Abstract 
We describe an extension of the micromagnetic finite difference 
simulation software MuMax3 to solve elasto-magneto-dynamical 
problems. The new module allows for numerical simulations of 
magnetization and displacement dynamics in magnetostrictive 
materials and structures, including both direct and inverse 
magnetostriction. The theoretical background is introduced, and the 
implementation of the extension is discussed. The magnetoelastic 
extension of MuMax3 is freely available under the GNU General Public 
License v3.
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Plain language summary
Magnets are common items in daily life. Their applications range from fridge magnets to remember recent 
holidays to large magnets in the motors of electric cars. Magnets are typically made of ferromagnetic mate-
rials, such as iron or cobalt, that possess a spontaneous magnetization. Magnets generate magnetic fields in their  
surroundings, which lead to magnetic forces that can be felt when two magnets attract each other. A special  
property of magnets that is less known is that the magnetization is also coupled to their shape. This effect is 
called magnetostriction. Hence, when one changes the magnetization direction, this also leads to a shape change 
of the magnet, for example to the contraction of a bar magnet. Also, an inverse effect exists that can change the 
magnetization direction when a magnet is deformed. Together, these effects can be classified as magnetoelastic.  
Magnetostriction is typically rather small, with relative length changes between 1 and 1000 parts per million,  
depending on the material. Despite the small effect, it has been employed for example for ultrasound  
generation and detection in Sonar applications that are used for navigation of ships and submarines.

Recently, researchers have also tried to apply magnetostriction in microelectronics. Magnetic hard disk drives 
have been used in computers for decades but the attempt to make computer chips with magnetic materials  
is a much more recent development. In some advanced technologies that may replace today’s CMOS transistors in 
the future, magnetoelastic effects play key roles. To better understand the operation of such chips, it is important  
to be able to simulate their magnetoelastic behavior. However, magnetoelastic simulation software pack-
ages are still scarce, especially as open source. Here, we describe such a software, which is available under the  
GNU General Public License, and give a short introduction on how to use it.

Introduction
Spintronic applications have attracted ever increasing interest in the last decades, following the commercial  
success of hard disk drives. More recently, magnetic random access memory (MRAM) has been developed1–3  
and integrated as embedded memory in commercial microelectronic systems4–6. Beyond these applications, 
many potential alternative spintronic device concepts have been researched6–12, including magnetic sensors13,14  
and spintronic logic15–19.

Magnetoelectrics are a class of spintronic materials that have received particular attention due to their poten-
tial to manipulate magnets at very low power and the possibility for new functionalities20–24. Besides multiferroic 
materials25–29, which possess simultaneous magnetic and ferroelectric polarization, magnetoelectric composites  
have been at the center of research on magnetoelectricity for decades20,23,29–34. Such composites consist of piezo-
electric and magnetostrictive materials and rely on the interaction between the magnetization and mechanical 
degrees of freedom. Applying an electric field to a piezoelectric material leads to the generation of a mechanical  
deformation (strain) that can be transferred to an adjacent magnetostrictive material. The strain inside the  
(ferromagnetic) magnetostrictive material leads then to a magnetoelastic effective magnetic field via the  
Villari effect (inverse magnetostriction) that can exert a torque on the magnetization. Conversely, the rota-
tion of the magnetization in a magnetostrictive material generates strain that can lead to charge separation and 
an electric polarization in an adjacent piezoelectric material. This indirect coupling between electric fields and  
magnetization is schematically represented in Figure 1. This paper (and the software described therein) addresses  
the magnetoelastic interaction between strain ε and magnetization M.

Figure 1. Schematic of the magnetoelectric coupling in magnetoelectric composite materials, in which the 
coupling between dielectric polarization P and magnetization M occurs indirectly via strain ε. The software 
described here allows for the numerical simulation of the magnetoelastic coupling in complex structures.
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For many applications, in particular in microelectronics, spintronic devices must be miniaturized to the nanos-
cale to be competitive. The integration of magneto-electric composites into scaled spintronic devices requires the  
understanding of the piezoelectric as well as the magnetoelastic interactions at the nanoscale. While the funda-
mental magnetoelectric and magnetoelastic coupling is well understood35–40, the detailed behavior of nanoscale 
structures has only very recently been addressed41–48. Nanoscale spintronic devices may possess complex struc-
tures with different functional areas and materials, leading to spatially varying properties and highly convoluted 
boundary conditions. It is clear that such devices cannot be represented well by (often approximate) analytical  
models and that numerical simulations are typically necessary.

While many commercial and free solutions exist to simulate nanoscale piezoelectric devices due to the impor-
tance of microelectromechanical systems (MEMS), no comprehensive free software package exists to date 
to simulate magnetoelastic interactions at the nanoscale. At microwave frequencies in the GHz range, which 
are often relevant for spintronic applications, the magnetization dynamics become nontrivial and micromag-
netic simulators are required to describe and understand the device performance. While it is possible to include 
magnetoelastic effective fields in micromagnetic simulations using the open-source simulator OOMMF49–51,  
MuMax352, or Boris53, such approaches cannot describe the backaction of the magnetodynamics on the elastody-
namics of the system. Hence, a full description of the magnetoelastic dynamics of such a system requires solve 
simultaneously both the elastodynamic and magnetodynamic equations of motion. Whereas full magnetoelas-
tic simulations of nanoscale structures have been published using Comsol®,54–62 the software modules developed  
for these simulations are not freely available for the scientific community.

In this paper, we present a magnetoelastic software module that allows for the simultaneous numerical solution  
of magneto- and elastodynamics in complex geometries, including both direct and inverse magnetostrictive  
interactions. The module is written as an extension of the widely used micromagnetic solver MuMax352. Both 
the solver and the extension are available under the GNU General Public License v3. This approach allows 
for the usage of all pre-defined functionalities of MuMax3 in combination with the magnetoelastic module.  
Furthermore, simulations are accelerated using GPUs with respect to standard simulators that run on CPUs.

Theoretical background
The magnetoelastic software module described below extends the well-known micromagnetic solver MuMax3 
and allows for the simulation of the magnetoelastodynamic behavior in magnetostrictive materials. In  
this section, the fundamental underlying equations are introduced, which are implemented in the solver.

The magnetization dynamics are described by

                                                                                     =�m T                                                                                     (1)

with m  = M / M
s
 the normalized magnetization, M

s
 the saturation magnetization, and T the magnetic torque. 

The dot denotes a time derivative. In the absence of spin currents, the torque is equal to the Landau-Lifshitz  
torque, given by
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γ, γ the absolute value of the gyromagnetic ratio, α the phenomenological damping constant, 

and H
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 the effective magnetic field. This effective field contains all effects that influence the magnetization  
dynamics, including exchange and dipolar interactions. Equation (1) and Equation (2) form the base of the  
micromagnetic solver already implemented in MuMax3.

Effects of inverse magnetostriction can be inserted into the above framework by adding a magnetoelastic  
field H
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 in Equation (2). For materials with cubic (or higher) crystal symmetry,  

the magnetoelastic effective field is given by 63–65
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with B
1
 and B

2
 the first and second magnetoelastic coupling constants, respectively, and ε

ij
 the components  

of the mechanical strain tensor �ε .

The elastodynamics in a solid are described by the second order differential equation66,67

                                                                              eff ,+ =�� �u u fρ η                                                                               (4)

or equivalently by two first order differential equations
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                                                                            (5)

with u  the displacement, v  the velocity, a  the acceleration, ρ the mass density, η a phenomenological damp-
ing parameter, and f

eff
 the effective body force. This body force contains all effects that influence the displacement  

dynamics, such as elastic or magnetoelastic contributions. These two contributions are the ones considered in 
this extension. The elastic body force is given by f

el
 = ˆ∇σ , with σ̂  the mechanical stress tensor. For small  

displacement values, Hooke’s law ˆ ˆˆ =σ cε  is valid. Here, ĉ  is the fourth order stiffness tensor. Together with 

the definition of the strain ( )1ˆ ( )
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Here, c
ij
 are the components of the stiffness tensor in reduced dimensionality, i.e. in Voigt notation.

Considering uniform displacement along the z-direction, i.e. ∂u/∂z = 0, Equation (6) can be simplified to
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This form allows for the description of the elastodynamics in 1D, 2D, and quasi-3D elastic systems.

In magnetostrictive materials, there is also a body force contribution due to the magnetostriction effect. For a  
magnetostrictive material with cubic crystal structure (or higher symmetry), the magnetoelastic body force is  
given by
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The mechanical boundary conditions at the surface are

                                                                                   ˆ ,=F σns                                                                                    (9)

with F
s
 the traction force per unit surface and n the surface normal.

Methods
In this section, we describe the MuMax3 framework as well as the implementation of the magnetoelastic  
module. The integration of the module into MuMax3 has the benefit that all predefined MuMax3 func-
tions can also be applied to the magnetoelastic extension. The first part of this section explains the numerical  
implementation of the elastodynamic equations as well as the elastic body force. This is followed by an over-
view of all novel functions and parameters defined in the magnetoelastic extension together with instructions  
on how to use them.

MuMax3 framework
MuMax3 is an established finite difference micromagnetic solver. In the following, several important aspects of 
the MuMax3 framework as well as the procedures for running simulations and extracting data are briefly intro-
duced. This introduction is meant to provide the necessary basis to properly use the magnetoelastic module in a  
later stage.

In MuMax3, simulations are often defined by a script with the .mx3 extension that contains all information nec-
essary to describe the system under study. The script syntax is based on a subset of the Go language and is com-
prehensively explained in the MuMax3 documentation52,68. The most important aspects are, however, briefly  
explained here.

The first part of the script contains typically information about the dimensions of the simulated system and the 
mesh size. The user sets the mesh and the dimensions by defining the cell size together with the number of cells 
in the three orthogonal directions. The cell shape is always a cuboid. Within the simulated system, it is possi-
ble to define different regions with different geometries, in which the material parameters can vary, and which  
can therefore represent different materials.

Next, material parameters need to be assigned to every region. Based on the provided parameters, MuMax3 auto-
matically determines which interactions need to be considered in the simulation. Therefore, it is straightforward  
to include a wide range of different interactions by just specifying appropriate material parameters. Once the 
mesh with its regions and all material parameters are provided, the simulation can be run in two ways: the first 
option consists of a numerical energy minimization to determine the equilibrium ground state of the system. The  
second option consists of the time-dependent integration of the magnetization dynamics using Equation (1).  
This option allows for the assessment of the temporal evolution of the dynamic variables, in particular the 
magnetization dynamics. In this paper, we will focus on the second option. Several numerical integration  
schemes are readily implemented in MuMax3 and can be selected by the SetSolver(x) command, with 
x an integer between 1 and 668,69. Once the desired solver is chosen, the simulation can be started by the  
command run(t_tot), with t_tot the total simulation time set by the user.

MuMax3 can also perform several mathematical operations on physical variables. For example, this can be 
useful when extracting and postprocessing the output data. Note that all mathematical operations are per-
formed on GPUs, which typically results in short computational times. All variables can be extracted at any time  
during the simulation and can be converted to different output formats, such as .ovf, .vtk, or .csv.

Implementation of the magnetoelastic extension
To simulate the magnetoelastic dynamics, both the magnetic and elastic equations of motion, i.e. Equation (1)  
and Equation (4), respectively, must be solved simultaneously. For the implementation, the two first order dif-
ferential equations in Equation (5) were chosen instead of the the single second order differential equation in  
Equation (4) for stability reasons. Hence, the system of equations that must be solved becomes

                                                                                    =�m T                                                                                     (10)

                                                                                     =�u v                                                                                      (11)
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which can be written in a compact manner as
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]. Note that the magnetic torque  

T and the effective body force f
eff

 include the magnetoelastic field and the magnetoelastic body force, respec-
tively, to account for the mutual interactions between the elastic and magnetic domains. Hence, instead 
of solving a single differential equation, i.e. Equation (1), the magnetoelastic module must solve a set of  
differential equations, including elastic and magnetoelastic interaction terms, as a function of time.

Time integration. The time integration of Equation (13) has been numerically implemented via the fourth order  
Runge-Kutta (RK4) method given by

                                                            1 2 3 41 ( 2 2 ),
6+ +=
∆ + + +i i

t
w w k k k k                                                             (14)

where the subscript i corresponds to the number of the time step with length ∆t. The k-parameters are given by

                                                                   1 ( , )= iitk R w                                                                                           (15)

                                                                   2 1+ +
2 2
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t t

itk R w ki                                                                     (16)

                                                                   3 2+ +
2 2

,∆ ∆ =   
t t

itk R w ki
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                                                                   ( )4 3+ + .,= ∆ ∆it t tk R w ki
                                                                     (18)

To use this new solver instead of the regular MuMax3 solvers that integrate only Equation (1), the user must 
specify SetSolver(9) in the .mx3 script. The regular MuMax3 solvers run by default with adaptive  
time stepping. By contrast, the novel solver only runs with a predefined fixed time step ∆t, which also needs to 
be defined by the user in the .mx3 script. Typical time steps that give accurate results and lead to reason-
able simulation times are of the order of ∆t ≈ 0.1 ps. The user can also always verify whether the chosen time 
step is accurate enough by running an additional simulation with a much smaller time step. If both simulations 
lead to identical results, the chosen time steps are sufficiently small. If the two results differ, the time step should  
be shortened further.

Calculation of R. For every time step i, the right hand side of Equation (13), R(t, w), needs to be calculated  
several times. The vector R comprises the magnetic torque T, the velocity v , and the acceleration a. The numeri-
cal calculation of T is already implemented and optimized in the regular MuMax3 framework. Hence, the  
calculation of T is kept untouched in the magnetoelastic extension. The velocity vector v  is obtained by the  
Runge-Kutta integration of Equation (12). Finally, the acceleration a is determined by calculating a = (f

eff
 − ηv) /ρ  

using the previously found velocity v in combination with Equation (7) and Equation (8), whose sum is the  
effective body force.

In the following, the numerical implementation of the elastic body force will be explained in more detail 
since it is nontrivial in presence of free elastic boundary conditions. The elastic body force depends on  
second order spatial derivatives of the displacement, as indicated by Equation (6). These spatial derivatives are  
approximated using the finite difference method. In the bulk of the system, the derivatives are calculated based 
on the sum of a second order forward and second order backward finite difference using averaged stiffness  
constants. This is done to properly account for parameters that may vary between different positions (regions). 
To illustrate this approach, the implemented equations to calculate the second order derivative of u (i, j)  
at position (i, j) with respect to x and the mixed derivative with respect to x and y are 
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The second derivative in the y-direction as well as the mixed derivative with respect to y and x directions are 
defined in an straightforward analogous way. For uniform stiffness constants, i.e. c(i, j) ≡ c, these equations  
reduce to the regular central finite difference scheme, i.e.
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Boundary conditions. At the edges of a structure, elastic boundary conditions need to be considered, which 
alter the differential equations and thus their numerical implementation. Three different elastic boundary  
conditions are implemented in the magnetoelastic module:

1.    Periodic boundary conditions, which connect the left edge to the right edge and the bottom to the 
top of the structure. These boundary conditions do not represent physical boundaries, and therefore  
Equation (19) and Equation (20) can be used at the edges as well.

2.    Fixed boundary conditions, which also do not require modifications of the bulk finite difference scheme.  
They can be implemented by defining a region at the boundary with a fixed displacement value (e.g. of 0).

3.    Free boundary conditions, which correspond to zero traction force at the surfaces.

The third type of free boundary conditions requires the reformulation of the finite difference scheme at the 
boundaries to satisfy Equation (9). For simplicity, the simulated structure is assumed to be uniform in the  
z- direction with boundaries only in the x- and y-directions. Moreover, we consider zero traction force. Then, the  
Neumann boundary conditions at the free surface are

                                                                         

0

0

0.

+ =

+ =

+ =

xx x xy y

yx x yy y

zx x zy y

n n

n n

n n

σ σ

σ σ
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                                                                         (23)

The free boundary condition in the x-direction, i.e. n
x
 = 1, n

y
 = n

z
 = 0, then becomes σ

xx
 = σ

yx
 = σ

zx
 = 0 and similarly  

for the y-direction, σ
yy

 = σ
xy

 = σ
zy
 = 0.

These expressions must be inserted into the elastic body force at the edges. The implementation of the equa-
tions at the mesh edge perpendicular to the x-direction is described below as an example. The same procedure can  
be used to derive expressions for the corresponding equations at the other interfaces.

The mesh near a boundary in the x-direction is visualized in Figure 2. The interface itself is located at  
positions (−1/2, j), which are the exact locations where the boundary conditions in Equation (23) are valid. Note 
that this boundary also describes the limits of the magnetization, i.e. the magnetic material ends at (−1/2, j). By  
contrast, the coordinates of the points next to the boundary edge can be written as (0, j).
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For free boundary conditions, the differential equations need to be modified. In the following, the three  
components of the elastic body force are rewritten in their finite difference approximations taking into account  
σ

xx
(i − 1/2, j) = σ

yx
(i − 1/2, j) = σ

zx
(i − 1/2, j) = 0.

The x-component of the elastic body force is

                                                               
,
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.= + xyxx

@ j@ j

@x @y

σσ
f
el x

                                                               (24)

At location i = 0, the first term of Equation (24) is given by

                       

1 2

1 1

( 0, ) 1 ( 1 / 2, ) ( , ) ( , ) ( 1 / 2, )

1 12

2 2

( 1 / 2, ) ( , ) ( , ) 0

( 1 / 2, )

( 1 / 2, ) ( 1 / 2, )

( 1, ) ( , ) [ ( 1) ( )]

2

= + − − −
= +

∆ ∆

+ − −
= +

∆ ∆

+
=

∆

+ + +

+
∆

+ + + −
=

∆

 
 
 
  

xx xx xx xx xx

xx xx xx

xx

yx

@ i j i j i j i j i j

@x
x x

i j i j i j

x x

i j

x

@u@u
i j i j

@x @y

x

i j i j i ix x

σ σ σ σ σ

σ σ σ

σ

c c

c c u u
2

2

( , 1) ( 1, 1) ( , 1) ( 1, 1)
,

4

+ + + + − − − + −
+

∆ ∆


x

u u u u

x y

y y y yi j i j i j i j
c

                        (25)

Figure 2. Definition of the grid at a boundary.
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with

                 2 2 2 2 2 2
2

( , 1) ( 1, 1) ( , 1) ( 1, 1) 2 ( , ) 2 ( 1, )
,

8

+ + + + + − + + − + + +
=�

c i j c i j c i j c i j c i j c i j
c                  (26)

whereas the second term becomes

                                                      
(0, ) (0, 1) (0, 1)

0.
2

σ σ σ+ − −
= ≈

∆
xy xy xy

y y

j j j@

@
                                                      (27)

Note that the boundary condition formally states that σ
xy

(−1/2, j) = 0, whereas this is approximated by σ
xy

(0, j) = 0  
in the numerical implementation. A possible solution to circumvent this approximation is to use a staggered 
grid where one of the grids contains the displacement values and the other one the stress values. Another solu-
tion could be to implement an additional raster of mesh points on the outside of the “original” mesh that can 
be used to set the proper boundary conditions. In this extension, we have chosen to use the approximation  
σ

xy
(0, j) ≈ σ

xy
(−1/2, j) = 0 because the mesh is already defined and fixed for the magnetization. However,  

using another or an additional mesh would strongly complicate the problem since the magnetoelastic  
extension is built based on the MuMax3 framework, which is designed to work with one mesh only. 

The y-component of the elastic body force is given by

                                                                 el,

(0, ) (0, )
.

σ σ
= +

j j
f y

yx yy

x y

@ @

@ @
                                                                (28)

Considering again that the surface of the magnetic material is located at i = −1/2 and taking into account the  
boundary conditions given in Equation (23), the first term can be rewritten as
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                       (29)

and the second term as
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Finally, the z-component of the elastic body force is given by

                                                                 el,

(0, )(0, )
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σσ= +
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f z
zyzx

x y
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                                                                (31)

In this case, the first term can be rewritten as
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and the second term as
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Within MuMax3, all these mathematical operations are parallelized and performed on a GPU to reduce the  
computational time.

Operation of the magnetoelastic extension
The instructions to install the software are provided on the MuMax3 github page https://github.com/mumax/  
The software requires the installation of Go and the CUDA Toolkit as well as the availability of an NVIDIA GPU.

In MuMax3, several different data types exist, such as parameters, fields, excitations, etc., which can be 
defined, modified, or extracted via various methods52,68. This section presents an overview of additional  
material parameters, vector fields, excitations, energies, boundary conditions, and initial states that are defined 
in the magnetoelastic extension. Their usage is analogous to the usage of the equivalent elements defined in  
MuMax352,68 and will therefore be only briefly discussed. Note that all regular MuMax3 methods can  
also be applied to the new elements defined in the MuMax3 extension.

New material parameters. The usage and the assignment of the newly defined material parameters are the 
same as for traditional MuMax3 material parameters. Details can be found in the MuMax3 documentation68.  
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Parameters can depend on time and—through the definition of regions—on position. The following list  
provides an overview of novel material parameters and their units, which are defined in the magnetoelastic  
extension of MuMax3:

•    C11: stiffness constant c
11

 = c
22

 = c
33

 of the stiffness tensor with unit [Nm−2];

•    C12: stiffness constant c
12

 = c
13

 = c
23

 of the stiffness tensor with unit [Nm−2];

•    C44: stiffness constant c
44

 = c
55

 = c
66

 of the stiffness tensor with unit [Nm−2];

•    eta: Phenomenological elastic damping constant with unit [kgs−1m−3];

•    rho: Mass density with unit [kgm−3];

•    B1: first magnetoelastic coupling constant with unit [Jm−3];

•    B2: second magnetoelastic coupling constant with unit [Jm−3].

New vector fields. There are two vector field types in MuMax3. The first one is called a variable and can 
be treated in the same way as the magnetization. The second type is called a quantity and represents a field that 
can be derived from the fundamental variables. The usage of the new vector fields is the same as for the  
traditional MuMax368. The novel variables and their units defined within the magnetoelastic extension of  
MuMax3 are:

•    u: elastic displacement vector with unit [m];

•    du: velocity vector with unit [ms−1];

The novel quantities and their units defined within the magnetoelastic extension of MuMax3 are:

•    normStrain: vector that contains the normal strain components [ε
xx

, ε
yy
, ε

zz
], calculated according  

to ( )1ˆ ( )
2

T= +∇ ∇ε u u , with unit [Nm−2]. Note that the strain corresponds to the real strain and not the  

engineering strain;

•    shearStrain: vector that contains the shear strain components [ε
xy
, ε

yz
, ε

xz
], calculated according to 

( )1ˆ ( )
2

T= +∇ ∇ε u u , with unit [Nm−2]. Again, note that the strain corresponds to the real strain and not the  

engineering strain;

•    normStress: vector that contains the normal stress components [σ
xx

, σ
yy
, σ

zz
], calculated according to  

Hooke’s law, ˆ ˆˆ =σ cε, with unit [Nm−2];

•    shearStress: vector that contains the shear stress components [σ
xy
, σ

yz
, σ

xz
], calculated according to  

Hooke’s law, with unit [Nm−2];

•    poynting: elastic Poynting vector, calculated via P
el
 = ˆ− vσ , with unit [Wm−2];

•    B_mel: magnetoelastic field µ
0
H

mel
 with unit [T] implemented according to Equation (3);

•    F_mel: magnetoelastic body force with unit [Nm−3] implemented according to Equation (3).

The magnetoelastic MuMax3 extension can simulate magnetoelastodynamics for materials with cubic or higher 
symmetries. Hence, the module only contains the c

11
, c

12
, and c

44
 stiffness constants. For the strain, the mag-

netoelastic field, and the magnetoelastic body force, standard central finite difference schemes are used to  
calculate the derivatives in the respective equations.

Excitations. Excitations, such as applied fields and current densities, can depend on time and space follow-
ing the form f(t) × g(x, y, z). Here, g can be a continuously varying spatial profile. This is different from the  
material parameters, which need to be uniform within each region. The following gives an overview of novel 
excitations and their units within the magnetoelastic MuMax3 extension. Their usage is analogous to the  
regular MuMax3 usage for excitations68:

•    force_density: external body force f
ext

 that is added to the effective body force f
eff

 = f
el
 + f

mel
 + f

ext
, with 

unit [Nm−3];
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•    exx: ε
xx

 strain component;

•    eyy: ε
yy

 strain component;

•    ezz: ε
zz
 strain component;

•    exz: ε
xz
 strain component;

•    exy: ε
xy

 strain component;

•    eyz: ε
yz
 strain component.

Energies. Energies can be extracted at different moments in time to study the system. Every energy contribu-
tion can be extracted as either a field or a scalar value. The field corresponds to the energy density and the scalar  
object corresponds to the total energy of that contribution inside the system. The following list gives an  
overview of novel energies and their units defined in the magnetoelastic MuMax3 extension:

•    Edens_el: elastic energy density (unit [Jm−3]) in the linear regime where Hooke’s law is valid,  
implemented via

                                                             el
, , ,

1 1
ˆ ˆ ;

2 2
cε ∑= : = ijkl kl ij

i j k l
ε ε εσ                                                               (34)

•    E_el: the total elastic energy, i.e. el dV∫E , with unit [J];

•    Edens_mel: magnetoelastic energy density (unit [Jm−3]) for a material with cubic (or higher) crystal  
symmetry, implemented via

                                                           
2
imel 1 2

;B Bε
≠

∑ ∑= + i jm mii ij
i i j

m ε ε                                                             (35)

•    E_mel: total magnetoelastic energy, i.e. elm dV∫E , with unit [J];

•    Edens_kin: kinetic energy density (unit [Jm−3]), implemented via

                                                                             
2

kin ;
2

ρ
ε =

v                                                                                (36)

•    E_kin: total kinetic energy, i.e. kin dV∫E , with unit [J].

Initial states. Three new initial states have been implemented for both magnetization and displacement. Their  
usage is equivalent to the standard MuMax3 usage for the definition of the initial state68.

•    A Gaussian pulse with spherical distribution of the out-of-plane vector component: GaussianSpheri-
cal_outplane(A, pos_x, pos_y, sig_x, sig_y float64), implemented as

                                                                      2 2
0 0
2 2

( ) ( )

2 2

0

0

,Ae
σ σ

− −

=
=

−
=

x

y

x x y y

x y
z

u

u

u

                                                                     (37)

•    with x
0
 = pos_x, y

0
 = pos_y, σ

x
 = sig_x and σ

y
 = sig_y;

•    A Gaussian pulse with spherical (symmetric) distributions of the in-plane vector components: 
GaussianSpherical(A, pos_x, pos_y, sig_x, sig_y, angle float64), implemented 
as
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2 2
0 0
2 2

2 2
0 0
2 2

( ) ( )

2 2

( ) ( )

2 2

cos( )

sin( )

0,

Ae

Ae

σ σ

σ σ

θ

θ
−

− −

− −

−
=

=

=

x x y y

x y
x

x x y y

x yy

z

u

u

u

                                                                (38)

     with θ = angle in degrees, x
0
 = pos_x, y

0
 = pos_y, σ

x
 = sig_x and σ

y
 = sig_y;

•    Uniformly oriented in-plane vector components along a specific direction with a Gaussian distribution along 
the transverse direction GaussianUniform(A, pos, sig, angle1, angle2 float64), imple-
mented as

                                                                      

2
0
2

2
0
2

( )

2

( )

2

cos( )

sin( )

0,

Ae

Ae

σ

σ

θ

θ −

−′

−′

−=

=

=

x x

x

x x

y

z

u

u

u

                                                                     (39)

     with θ = angle2 in degrees, x0 = cos(ϕ)x + sin(ϕ)y, ϕ = angle1, x
0
 = pos and σ = sig.

Boundary conditions. It is possible to apply several types of elastic boundary conditions in the new magne-
toelastic MuMax3 module. All elastic boundary conditions correspond to interfaces in the x- and y-directions  
of the film since uniform displacement is assumed along the z-direction.

•    Free boundary conditions, corresponding to zero forces at the edges of the film. These are the default  
boundaries in the x- and y-directions of the film.

•    Periodic boundary conditions, which can be enabled in the same way as in the traditional MuMax3  
framework via the SetPBC() command68.

•    Absorbing boundaries, which can be implemented by defining regions with gradually increasing elas-
tic damping η, similarly to the gradually increasing damping used to absorb spin waves in a purely  
magnetic system70. This is, for example, useful to prevent wave reflection at surfaces or interfaces.

Fixed boundary conditions for the displacement are also possible. Such boundary conditions can be obtained 
by defining regions at the edges of the mesh with fixed displacement values. The parameter frozenDispLoc  
defines a region with fixed displacement, and the parameter FrozenDispVal defines the fixed displacement 
value. This works in the same way as the regular frozenspins function in MuMax3, which fixes the spins in 
a specific region. However, spin (magnetic moment) has always the same norm, whereas the norm can vary 
for the displacement. Therefore, the additional function FrozenDispVal has been defined. Note that this  
value can be time dependent and thus can also act as an excitation source.

For example, the code

defregion(2,rect(400e-9,
     1000e-9).transl(-1500e-9,-1000e-9,0))
frozenDispLoc.SetRegion(2,1)
frozenDispVal.SetRegion(2,0,0,0))

sets region 3 to zero displacement. It is also possible to define a time-varying displacement in this region:

defregion(2,rect(400e-9,
     1000e-9).transl(-1500e-9,-1000e-9,0))
frozenDispLoc.SetRegion(2,1)
frozenDispVal.SetRegion(2,
     vector(0.1e-13*sin(2*3.1415*1e9*t),0,0))

This code therefore acts as as a source of (magnetoelastic) waves. 
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Use cases
The magnetoelastic module has been extensively quantitatively tested. A demonstration of its capabilities  
has been published in Ref. 71, which discusses simulations of confined magnetoelastic waves in nanoscale  
magnetostrictive CoFeB waveguides. Below, we reproduce verbatim the input script (including annotations)  
used to generate the data in Figure 7 in Ref. 71 as an example. As output, the input script generates data in the 
.ovf format. The .ovf format is conventionally used by micromagnetic simulators, including MuMax352  
and OOMMF49, and documented in detail in the respective manuals.

//Specify output format
OutputFormat = OVF2_TEXT

//mesh
dx := 5e-9
dy := 5e-9
dz := 20e-9
Nx := 4000
Ny := 40
Nz := 1
SetMesh(Nx, Ny, Nz, dx, dy, dz, 0, 0, 0)

//External parameters
f   := 9.8e9
Bac := 1e-3
Bdc := 5e-3

//Elastic parameters CoFeB
C11 = 283e9
c12 = 166e9
C44 = 58e9
rho = 8e3
eta = 0

//Magnetoelastic parameters CoFeB
B1 = -8.8e6
B2 = -8.8e6

//Magnetic parameters CoFeB
Msat = 1.2e6
Aex  = 18e-12
alpha = 4e-3

//Absorbing regions on both sides
//Left
defregion(24,xrange(-5.2e-6,-5e-6))
eta.setregion(24,1e12)
alpha.setregion(24,1e-2)
defregion(25,xrange(-5.4e-6,-5.2e-6))
eta.setregion(25,3e12)
alpha.setregion(25,5e-2)
defregion(26,xrange(-5.6e-6,-5.4e-6))
eta.setregion(26,6e12)
alpha.setregion(26,1e-1)
defregion(27,xrange(-Inf,-5.6e-6))
eta.setregion(27,5e13)
alpha.setregion(27,0.5)
//right
defregion(14,xrange(5e-6,5.2e-6))
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eta.setregion(14,1e12)
alpha.setregion(14,5e-2)
defregion(15,xrange(5.2e-6,5.4e-6))
eta.setregion(15,3e12)
alpha.setregion(15,5e-2)
defregion(16,xrange(5.4e-6,5.6e-6))
eta.setregion(16,6e12)
alpha.setregion(16,1e-1)
defregion(17,xrange(5.6e-6,Inf))
eta.setregion(17,5e13)
alpha.setregion(17,0.5)

//Static field
B_ext = vector(Hdc, 0, 0)

//Excitation field
defregion(2,xrange(-50e-9,50e-9))
B_ext.setregion(2,
   vector(Hdc, Hac*sin(2*pi*f*t), 0))

//Initial state
u=uniform(0,0,0)
m=uniform(1,0,0)

//Solver
SetSolver(9)
fixdt = 1e-13

//Output
autosave(B_mel, 1e-9)
autosave(F_mel, 1e-9)
autosave(m, 1e-9)
autosave(u, 1e-9)
autosave(normstrain, 1e-9)
autosave(shearstrain, 1e-9)
autosave(B_demag, 1e-9)

//running
run(10.0e-9)

To obtain an estimate of the additional required computation time due to the magnetoelastic extension, we exe-
cuted this script on an NVIDIA Quadro K2200 GPU for cases where magnetoelastic interaction is present, 
i.e. using Setsolver(9), and without magnetoelastic interaction, i.e. using Setsolver(5). Includ-
ing the magnetoelastic interactions, the simulation took 54:31 min. By contrast, the simulation time was  
38:14 min when the magnetoelastic coupling was deactivated.

Conclusion
This paper describes an extension of the established finite difference micromagnetic solver MuMax3, which adds 
capabilities to calculate elastodynamics including the magnetoelastic coupling between mechanical and mag-
netic degrees of freedom. It therefore allows for the finite difference simulation of magnetoelastodynamics in 
1D, 2D or quasi-3D systems. The implementation in MuMax3 means that all standard MuMax3 functionali-
ties can also be used in the magnetoelastic extension, and that the mathematical operations can be performed on 
GPUs, resulting in low computational times. Multiple different boundary conditions have been implemented, spe-
cifically periodic, fixed, and free bounadry conditions, as described in Sec. . The software is freely available  
under the GNU General Public License v3.
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Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
The MuMax3 magnetoelastic extension is open source and freely available in the github repository. The source 
files can be found in the mumax/engine and mumax/cuda subfolders and have the term elastic in  
their file name.

•    Source code available from: https://github.com/Fredericvdv/Magnetoelasticity_MuMax3

•    Archived source code at time of publication: https://doi.org/10.5281/zenodo.4450141

•    License: GNU General Public License v3
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This work reports on a magnetoelastic extension to enhance the capabilities of the free MuMax3 
micromagnetics simulation code. It fills an unmet need, providing open access simulation 
capabilities to support the increasing number of studies in which the magnetostrictive response is 
relevant. Indeed, the paper introduction provides a good overview of the state of the art and the 
need of these simulations in the context of magnetoelectric spintronic devices. 
 
The fundamental equations in which the code is based, its implementation in MuMax3 and 
considerations on the treatment of elastic boundary conditions are discussed with clarity and 
simplicity, making the paper understandable to non-specialists in simulations and mechanics of 
solids, among which I include myself. It is particularly welcome the section entitled Operation of the 
magnetoelastic extension, giving useful practical information and details for making it easier for 
new users to getting started in the new software, which is not always the case in the literature 
describing new simulation codes. In a similar vein, the authors provide the commented input 
script of the magnetoelastic module which was used to simulate a nanoscale magnetostrictive 
CoFeB waveguide for one of their recent publications. 
 
Overall, this new module is poised to become a valuable support for research on a range of 
systems and applications in which magnetostriction can be relevant and thus the manuscript 
should be indexed on Open Research Europe. 
 
However, I think that a short discussion on the limitations of the module would improve the 
manuscript. More specifically, i) The code has been implemented for cubic crystal symmetries. 
Since many relevant magnetic materials have lower symmetries than the cubic one it would be 
interesting a comment on the possible extensions to lower symmetries and in particular to 
systems with uniaxial anisotropy. ii) Since the full 3D elastodynamics description assumes of 
uniform displacement along the z direction, it would be helpful some discussion on the limitations 
of this assumption and on how to assess, using the module, how realistic this is for a particular 
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model, if this is possible. 
 
Other additional minor remarks: 
Page 4, end of line 16: “solve” should be replaced by “solving”. 
At the end of page 7, mention is made to eq. 6. Since it is indeed eq. 7, a simplification of eq. 6 
considering uniform displacement along z, which is used in the code, to avoid confusion in the 
discussion of boundary conditions that follows it would be better to refer to eq. 7. 
At the end of page 14 the text description accompanying the example of defining a time 
dependent displacement boundaries refers to “region 3” but it seems that the code is rather for a 
region 2… 
The paper repeatedly refers to “cubic (or higher) crystal symmetry”. To my understanding this is a 
bit confusing because the cubic one is the highest of all the crystal symmetries. A material which 
has a higher symmetry than that of a cubic crystal must be polycrystalline and therefore it is not 
strictly a crystal but a polycrystalline material.
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The authors developed an open-source extension to the finite difference simulation software 
MuMax3 that allows simulating dynamic magneto-elastic interactions. MuMax3 is widely used for 
simulation of magnetization dynamics due to its open-source availability, ease of use and fast 
computation times. Magneto-elastic interactions are generally relevant for magnetization 
dynamics as most magnetic materials are magneto-elastic. Magneto-elasticity can enable 
magnon-phonon hybridization. This software extension should be a very powerful tool to simulate 
magneto-elastic interactions and hybrid magnon-phonon dynamics beyond the limits of simple 
analytical models. Previous open-source software implementations have only been able to 
simulate the effect of magneto-elastics on magnetization dynamics, but not the back-action of 
magnetization dynamics onto the elastics. Considering this back-action is however required for 
accurate description of magneto-elastic phenomena. The contribution is thus of high relevance 
and novelty for the field. 
 
The description of the underlying physics and parameters used in the code is clear and the 
authors introduce the relevant background to motivate their work in a suitable manner. I found 
this to be a very high quality and accessible work that will be important in particular for scientists 
intending to employ and tailor the extension for their own problems. 
 
As a minor suggestion for clarification, the authors should consider providing a short description 
of the limitations of the extension. The authors demonstrated in Ref. 71 that the extension can be 
used to simulate confined magneto-elastic waves in thin waveguides. It would be nice to briefly 
mention here if there are other geometries where their extension can (or cannot) be used. As an 
example, many researchers are interested in the interaction of surface acoustic waves (SAWs) and 
magnetization dynamics in magnetic thin films. The typical system thereby is a substrate / thin 
magnetic film bilayer. To me it is not clear to what capacity the extension can be used as is or 
modified to address magneto-elastic phenomena in this configuration. For SAW-spin wave 
interactions in laterally extended systems, is it possible to work around the restriction of uniform 
displacement in the z direction by taking a coordinate system with SAW propagation along x and 
interface normal along y (plane surface waves)? A major challenge might be accurate simulation of 
SAWs that dominantly propagate in the non-magnetic substrate but still interact with spin waves 
in the magnetic film. Can the authors comment on this challenge? 
 
As a second point for potential future modifications, it would be interesting to discuss further 
mechanisms that can lead to a coupling of magnetization dynamics and strain even in the absence 
of magneto-elasticity. In this regard, Xu and coworkers 1 recently discussed magneto-rotation 
coupling which would add an additional term to Eq. (3) stemming from the rotation of the 
magnetic anisotropy axis due to shear strain. This coupling can be comparable or even larger than 
magneto-elastic coupling 1,2. Is it in principle possible to extend the code to consider magneto-
rotation coupling? 
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I believe that the authors have done a wonderful job of expanding the availability of software to 
address the important applications of magnetoelastic problems. To my knowledge the only other 
approaches are housed in Finite Element based programs such as Comsol which requires the 
partial differential equations to be input AND the structure is fairly slow and limited in size of 
problems that can be solved. Below, I provide some comments the authors may wish to consider 
adding or commenting on in the manuscript.

Can authors comment on how this code which I believe is FDTD based compares with FEM 
based approaches. I am hopeful that the authors know the answer and can provide 
comparison metrics so that others working in this area can make informed decisions on 
which numerical platform for this problem is superior. 
 

1. 

Authors reduce the full 3D problem to a subset with the assumption of zero strain in the z 
direction, eq 7. I am not sure why they do this or is it because the full 3D problem is to 
cumbersome to solve. The previous FEM solutions in the literature do not make this 

2. 
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assumption. Adding a sentence or two describing why this assumption is made will help the 
community.

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes
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expertise to confirm that it is of an acceptable scientific standard.
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