MultiFire20K: A semi-supervised enhanced large-scale UAV-based dataset for fire monitoring
Description
MultiFire20K
MultiFire20K is a UAV-based dataset for fire, classification, segmentation and multi-task learning. It contains 20,500 images extracted from 67 videos, covering diverse urban (build-up) and rural (natural landscape) scenes worldwide.
Dataset Stats
- Images: 20,500
- Videos: 67
- Categories: Fire / Normal
- Environments: Urban / Rural
│ Category │ Build-Up │ Natural Landscape │ Total │
│ Fire │ 5,075 │ 5,085 │ 10,160 │
│ Normal │ 5,110 │ 5,230 │ 10,340 │
│ Total │ 10,185 │ 10,315 │ 20,500 │
Annotations
- Manual masks (~10%) created with Fiji and LabelKit.
- Pseudo-labels (~90%) via a semi-supervised ensemble (for fire images).
- Normal images: RGB only (no masks).
│ Fire Subset │ Human Ann. │ Pseudo-Labels │ Total │
│ Build-Up (Urban) │ 510 │ 4,565 │ 5,075 │
│ Rural (Landscape) │ 515 │ 4,570 │ 5,085 │
│ TOTAL │ 1,025 │ 9,135 │ 10,160 │
File Naming & Traceability
Each image encodes its source video and frame number:
`FramesV1_1000.jpg` → extracted from Video 1, frame 1000.
Image & Mask Formats
- Images: `.jpg` (various resolutions; mean ≈ 1147×636, range 426–1920 × 210–1080)
- Masks: `.tif` (single-channel, pixel-aligned with the image, used for *fire* images only)
Folder Structure
MultiFire20K/
├─ Annotations/
│ ├─ Fire_Rural_Annotate/ # fire rural: image.jpg + mask.tif
│ ├─ Fire_Rural_Annotate_RGB/ # fire rural RGB only
│ ├─ Fire_Urban_Annotate/ # fire urban: image.jpg + mask.tif
│ ├─ Fire_Urban_Annotate_RGB/ # fire urban RGB only
├─ Train/ # FR, FU, NR, NU subfolders
├─ Val/ # FR, FU, NR, NU subfolders
├─ Test/ # FR, FU, NR, NU subfolders
└─ data_structure.csv # metadata (label_type, fire_type, category, split)
```
Split codes:
> FR = Fire Rural, FU = Fire Urban, NR = Normal Rural, NU = Normal Urban.
> Rural is also known as Natural Landscape; Urban as Build-Up.
Note: In FR and FU (fire) folders you’ll find image + mask pairs (.jpg + .tif). In NR and NU (normal) folders there are images only (.jpg, no masks).
Use data_structure.csv to check whether a fire mask is manual or pseudo.
Metadata (`data_structure.csv`)
Columns:
- `image_name` — filename (e.g., `FramesV11_24900.jpg`)
- `label_type` — `manual` (human) or `pseudo` (generated)
- `fire_type` — `fire` or `normal`
- `category` — `rural` (natural landscape) or `urban` (build-up)
- `split` — `train`, `val`, `test`
Use this table to:
- filter manual vs pseudo masks,
- select fire vs normal,
- choose rural vs urban,
- load the official split.
Recommended Usage
Classification
- Labels: `fire_type` (binary) and optionally `category` (urban/rural).
- Use FR/FU/NR/NU folders or `data_structure.csv` for labels and splits.
Segmentation
- Pair each `image.jpg` with `mask.tif` of the same basename (fire images only).
- Prefer manual** masks for evaluation; pseudo-labels can be used for training at scale.
Citation
If you use MultiFire20K, please cite:
@article{shianios2025multifire20k,
title={MultiFire20K: A semi-supervised enhanced large-scale UAV-based benchmark for advancing multi-task learning in fire monitoring},
author={Shianios, Demetris and Kolios, Panayiotis and Kyrkou, Christos},
journal={Computer Vision and Image Understanding},
volume={254},
pages={104318},
year={2025},
publisher={Elsevier}
}
Files
Annotations.zip
Files
(9.3 GB)
Name | Size | Download all |
---|---|---|
md5:1ae1f9898e3d8a164a62b25c2ed792ef
|
4.5 GB | Preview Download |
md5:9cd80cf4bc7d4e3a03536f454e46d939
|
921.6 kB | Preview Download |
md5:c1dc8428a4d81c84919e7e893210fd66
|
3.4 kB | Preview Download |
md5:4d82bbc579c83b7ae99f3e9dca97228b
|
1.4 GB | Preview Download |
md5:db94a6153f1d9305f31c4614ff1d7f95
|
2.4 GB | Preview Download |
md5:748c5aa7cbe7ff0fac1703e6a6780cda
|
1.1 GB | Preview Download |
Additional details
Related works
- Is published in
- Journal: 10.1016/j.cviu.2025.104318 (DOI)