MultiFire20K MultiFire20K is a UAV-based dataset for fire, classification, segmentation and multi-task learning. It contains 20,500 images extracted from 67 videos, covering diverse urban (build-up) and rural (natural landscape) scenes worldwide. Dataset Stats - Images: 20,500 - Videos: 67 - Categories: Fire / Normal - Environments: Urban / Rural │ Category │ Build-Up │ Natural Landscape │ Total │ │ Fire │ 5,075 │ 5,085 │ 10,160 │ │ Normal │ 5,110 │ 5,230 │ 10,340 │ │ Total │ 10,185 │ 10,315 │ 20,500 │ Annotations - Manual masks (~10%) created with Fiji and LabelKit. - Pseudo-labels (~90%) via a semi-supervised ensemble (for fire images). - Normal images: RGB only (no masks). │ Fire Subset │ Human Ann. │ Pseudo-Labels │ Total │ │ Build-Up (Urban) │ 510 │ 4,565 │ 5,075 │ │ Rural (Landscape) │ 515 │ 4,570 │ 5,085 │ │ TOTAL │ 1,025 │ 9,135 │ 10,160 │ File Naming & Traceability Each image encodes its source video and frame number: `FramesV1_1000.jpg` → extracted from Video 1, frame 1000. Image & Mask Formats - Images: `.jpg` (various resolutions; mean ≈ 1147×636, range 426–1920 × 210–1080) - Masks: `.tif` (single-channel, pixel-aligned with the image, used for *fire* images only) Folder Structure MultiFire20K/ ├─ Annotations/ │ ├─ Fire_Rural_Annotate/ # fire rural: image.jpg + mask.tif │ ├─ Fire_Rural_Annotate_RGB/ # fire rural RGB only │ ├─ Fire_Urban_Annotate/ # fire urban: image.jpg + mask.tif │ ├─ Fire_Urban_Annotate_RGB/ # fire urban RGB only ├─ Train/ # FR, FU, NR, NU subfolders ├─ Val/ # FR, FU, NR, NU subfolders ├─ Test/ # FR, FU, NR, NU subfolders └─ data_structure.csv # metadata (label_type, fire_type, category, split) ``` Split codes: > FR = Fire Rural, FU = Fire Urban, NR = Normal Rural, NU = Normal Urban. > Rural is also known as Natural Landscape; Urban as Build-Up. Note: In FR and FU (fire) folders you’ll find image + mask pairs (.jpg + .tif). In NR and NU (normal) folders there are images only (.jpg, no masks). Use data_structure.csv to check whether a fire mask is manual or pseudo. Metadata (`data_structure.csv`) Columns: - `image_name` — filename (e.g., `FramesV11_24900.jpg`) - `label_type` — `manual` (human) or `pseudo` (generated) - `fire_type` — `fire` or `normal` - `category` — `rural` (natural landscape) or `urban` (build-up) - `split` — `train`, `val`, `test` Use this table to: - filter manual vs pseudo masks, - select fire vs normal, - choose rural vs urban, - load the official split. Recommended Usage Classification - Labels: `fire_type` (binary) and optionally `category` (urban/rural). - Use FR/FU/NR/NU folders or `data_structure.csv` for labels and splits. Segmentation - Pair each `image.jpg` with `mask.tif` of the same basename (fire images only). - Prefer manual** masks for evaluation; pseudo-labels can be used for training at scale.