Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published April 11, 2022 | Version 1
Dataset Open

GlobalHighPM2.5: Big Data Gapless 1 km Global Ground-level PM2.5 Dataset over Land

  • 1. ROR icon University of Maryland, College Park
  • 2. ROR icon National Aeronautics and Space Administration
  • 3. ROR icon University of Iowa
  • 4. ROR icon Université de Lille
  • 5. ROR icon Harvard University
  • 6. ROR icon Shandong University of Science and Technology
  • 7. ROR icon Washington University in St. Louis
  • 8. ROR icon Southern University of Science and Technology
  • 9. ROR icon Peking University

Description

GlobalHighPM2.5 is one of the series of long-term, full-coverage, global high-resolution and high-quality datasets of ground-level air pollutants over land (i.e., GlobalHighAirPollutants, GHAP). It is generated from big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. 

This dataset contains input data, analysis codes, and generated dataset used for the following article, and if you use the GlobalHighPM2.5 dataset for related scientific research, please cite the below-listed corresponding reference (Wei et al., NC, 2023):

Input Data

Relevant raw data for each figure (compiled into a single sheet within an Excel document) in the manuscript.

Code

Relevant Python scripts for replicating and ploting the analysis results in the manuscript, as well as codes for converting data formats.

Generated Dataset

Here is the first big data-derived gapless (spatial coverage = 100%) monthly and yearly 1 km (i.e., M1K, and Y1K) global ground-level PM2.5 dataset over land from 2017 to 2022. This dataset yields a high quality with cross-validation coefficient of determination (CV-R2) values of 0.91, 0.97, and 0.98, and root-mean-square errors (RMSEs) of 9.20, 4.15, and 2.77 µg m-3 on the daily, monthly, and annual basises, respectively.

Due to data volume limitations, 

        all (including daily) data for the year 2022 is accessible at: GlobalHighPM2.5 (2022)

        all (including daily) data for the year 2021 is accessible at: GlobalHighPM2.5 (2021)

        all (including daily) data for the year 2020 is accessible at: GlobalHighPM2.5 (2020)

        all (including daily) data for the year 2019 is accessible at: GlobalHighPM2.5 (2019)

        all (including daily) data for the year 2018 is accessible at: GlobalHighPM2.5 (2018)

        all (including daily) data for the year 2017 is accessible at: GlobalHighPM2.5 (2017)

        Continuously updated...

More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html

Notes

Note that the data are recorded in UTC time (i.e., GMT+0). This dataset is continuously updated, and if you want to apply for more data or have any questions, please contact me (Email: weijing_rs@163.com; weijing@umd.edu).

Files

Wei_et_al-NC-2023.pdf

Files (6.8 GB)

Name Size Download all
md5:77f163076c0a2ac7655709df814eff5c
94.7 MB Download
md5:f16727ec0a2d0180680d91010becaa62
93.3 MB Download
md5:7df497843dd6fd3d3e23eec0e02b572a
91.8 MB Download
md5:c06a58e93bdb636bfae64cdf367e50dd
90.7 MB Download
md5:53f33bd053fdfb2047d1589a97e1e731
89.2 MB Download
md5:be11c604199bcedea4b139f7555ac0cc
88.0 MB Download
md5:8c74a4115ba9d7674237a146ba8082e8
88.2 MB Download
md5:09c4a555364e5e1967d3ee2c69037aec
88.3 MB Download
md5:79363a75129ef4bc4a023abefc266970
90.4 MB Download
md5:065402a124002012c890e97be64ce908
92.5 MB Download
md5:7f232c80eb3b202fac4cd6eb8c3c1447
96.8 MB Download
md5:4fa8f539f0aad694cba676aa71c7931e
102.6 MB Download
md5:f8e1b1f7290742187adf6a20b5ffab79
93.4 MB Download
md5:e8f18cbcf792e1b387e24878de07a3a9
93.1 MB Download
md5:01fcb0a06518bde9439fd9439918acc8
88.8 MB Download
md5:4a7cd94df9c735a05375fe1b88af5ef1
86.3 MB Download
md5:c467c1a73051288c83fc36f36b150d4c
89.5 MB Download
md5:4e74b64f2c0ad524236b758226b7110a
88.9 MB Download
md5:b8f2d1355c6aa43107546d6edea75439
88.5 MB Download
md5:be76a757536649c2cdfd0a602f09220b
85.4 MB Download
md5:4ce5cc60ef5523dcaee10fcb0808340c
83.2 MB Download
md5:b9a6789f6725ee0ba522a3ed727339df
82.1 MB Download
md5:b6e9f5f7f686966ea1b965aa7569f7df
84.8 MB Download
md5:f71a1d304e977d87fc465dd149efaa62
87.7 MB Download
md5:edbc88aa22d3a93aec2819c953486010
83.7 MB Download
md5:bae555b21b3c4e845973347328465dac
82.0 MB Download
md5:358b5f50820827b12db50a7fb1318486
81.4 MB Download
md5:2968fc5bb671bfe53ca79789533f9f34
79.6 MB Download
md5:eb8f413310864f0adaaecc6d744e31a9
82.3 MB Download
md5:523cd590f7f09829cb4e5b405b59fe3c
83.1 MB Download
md5:44f6a30680a40464e69867f5e484eb0c
87.0 MB Download
md5:da106e1c301de6cdeb0697cd991faa67
84.4 MB Download
md5:7fcf71e4c8f5a99284b7c8fe7af1c771
82.6 MB Download
md5:90499d44f99eb3b9738422da32276652
81.7 MB Download
md5:ed04583de9afdd72d6f6dcb131465209
82.8 MB Download
md5:9622cb54ed566de206153a12292e8dfa
85.1 MB Download
md5:db393d50ca918628375dcb6ab56c0f3d
89.6 MB Download
md5:96820e89d59f455129c0f6bd9e3dba8b
84.6 MB Download
md5:dbcd0bcf837c71902dae82894686173b
80.1 MB Download
md5:e69c57fc09abe577e6a570917ad27349
83.7 MB Download
md5:6b069a27ee245a97046feaab28e75cf2
82.6 MB Download
md5:592d6580ab7b4b631e8e8d6769cb1644
86.0 MB Download
md5:ba7c4617ca107dcbc2048419e27fe016
87.4 MB Download
md5:d8d48ecc8d80caf870c8ba0c955d832b
85.7 MB Download
md5:e1ff1ec733e870749aa561d4acd3d93e
86.9 MB Download
md5:78b31b82f8d4a8b7ab6db58eaad4614c
82.1 MB Download
md5:b68fe523c05281f89a41638091168cf9
84.3 MB Download
md5:938edc6e155ae33057eaa1c6142398f9
89.4 MB Download
md5:c9ffc7495436d3a645be73f3ebd40ed9
90.9 MB Download
md5:6ba5738750d90502f11a5fa5d49abe71
90.2 MB Download
md5:53c70264d1ddae3585417ced36121631
88.0 MB Download
md5:8519f6a4d4062f1382d4f5abfba2ed67
86.3 MB Download
md5:f3ff65990f86baabd718f9a861a53696
83.5 MB Download
md5:477b23ff1a4724666910bcd32253d18c
78.2 MB Download
md5:edf92d0b395e50b3e688e5361e69626e
82.5 MB Download
md5:69d19a7acd6e32c45673418729c0cec5
85.1 MB Download
md5:cfe55c8dcafa091dc7e954eac7e0dfe2
81.4 MB Download
md5:3f2886f17582f6fbdf50571cb5cc7498
82.2 MB Download
md5:e7264e8b6f245d8284f77ad1ae560733
87.8 MB Download
md5:0d010d8cb34a8acbf0f6c6df633597ee
88.0 MB Download
md5:23eed74806673a7728199f5c55bd42bf
83.8 MB Download
md5:2b7eb6413e88b3a81f2f927fde97f23d
82.7 MB Download
md5:7bd6b23298cd47718322fb397ec1a5eb
80.2 MB Download
md5:2964f9ebea1e3e6a85e01b23ddbfb47e
77.5 MB Download
md5:383fe53d149d7a1bc921d6c2df036934
80.7 MB Download
md5:07f8e4f63eb26a96c3aba6624876344c
78.2 MB Download
md5:8e5e23f991ad08b4fa7f36f6a429d225
78.3 MB Download
md5:1584586a995f5fab7f35371340584893
78.1 MB Download
md5:775bc81742c72afc76340c0e8431dcb0
77.1 MB Download
md5:ca8ae9d1d7c893462c9ba4da952e6f8f
75.9 MB Download
md5:36e5572afc81365a73f98042fad88a41
75.9 MB Download
md5:e27c804c0fc18a4384081484a097ec82
78.6 MB Download
md5:370f83bf7eccd2f06fff896fb4a49799
76.9 MB Download
md5:c8226a12003dbba300b8895b3618712c
73.2 MB Download
md5:8960e3b7e31ce24c032131e8370435a5
69.1 MB Download
md5:3b1e27cbfb2e10572545c13c22efc3f0
70.0 MB Download
md5:ccb27d6182c9e93cae4150213809a882
70.5 MB Download
md5:23a89808d396843ca512a1c01cca2a1a
63.5 MB Download
md5:e3aa7a09763c2bdbe637cc2134a973bf
160.8 MB Preview Download
md5:8353fc369673deaae7c59ab4b7384b0e
3.0 kB Preview Download
md5:df77274e5ad9e67889165b663ea9f621
33.9 MB Preview Download

Additional details

Related works

Is published in
Dataset: 10.1038/s41467-023-43862-3 (DOI)

Dates

Created
2022-04-11

References

  • Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3