GlobalHighPM₂.₅ (2018)
- 1. 0000-0002-8803-7056
- 2. 0000-0001-6737-382X
Description
Here is the first big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) global ground-level PM2.5 dataset over land for the year 2018. This dataset exhibits high quality, with a cross-validation coefficient of determination (CV-R2) of 0.91 and a root-mean-square error (RMSE) of 9.20 µg m-3 on a daily basis.
If you use the GlobalHighPM2.5 dataset in your scientific research, please cite the following reference (Wei et al., NC, 2023):
-
Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3
Notes
Files
Wei_et_al-NC-2023.pdf
Files
(38.9 GB)
Name | Size | Download all |
---|---|---|
md5:df98332ea25f663e89143269bac7f22d
|
3.4 GB | Preview Download |
md5:1c27ea080e8c4a0e10820c2c5f327fd5
|
3.0 GB | Preview Download |
md5:d1c420b2aae2996510b8ac3550c86e73
|
3.2 GB | Preview Download |
md5:ce688d5c127cee56a76b4bdb16624328
|
3.1 GB | Preview Download |
md5:47fad5aee477c7af95094f005aa86f30
|
3.2 GB | Preview Download |
md5:9724292e52e3a37e4d8832ab4616e2d4
|
3.1 GB | Preview Download |
md5:18ea2b572306dc2fd1614e7c1a111c83
|
3.3 GB | Preview Download |
md5:747ccfba71184c96b1e1ce59cc2e6ae9
|
3.2 GB | Preview Download |
md5:418d239a8c193c5b38f3a0b977800c0f
|
3.0 GB | Preview Download |
md5:b07ef481217ab00b0e84ac023d4f181b
|
3.1 GB | Preview Download |
md5:5ec919eb62d910bcc12fd8be0e23ed7c
|
3.0 GB | Preview Download |
md5:ba2285ebef3bb66d89e4f496bb545118
|
3.1 GB | Preview Download |
md5:f8e1b1f7290742187adf6a20b5ffab79
|
93.4 MB | Download |
md5:e8f18cbcf792e1b387e24878de07a3a9
|
93.1 MB | Download |
md5:01fcb0a06518bde9439fd9439918acc8
|
88.8 MB | Download |
md5:4a7cd94df9c735a05375fe1b88af5ef1
|
86.3 MB | Download |
md5:c467c1a73051288c83fc36f36b150d4c
|
89.5 MB | Download |
md5:4e74b64f2c0ad524236b758226b7110a
|
88.9 MB | Download |
md5:b8f2d1355c6aa43107546d6edea75439
|
88.5 MB | Download |
md5:be76a757536649c2cdfd0a602f09220b
|
85.4 MB | Download |
md5:4ce5cc60ef5523dcaee10fcb0808340c
|
83.2 MB | Download |
md5:b9a6789f6725ee0ba522a3ed727339df
|
82.1 MB | Download |
md5:b6e9f5f7f686966ea1b965aa7569f7df
|
84.8 MB | Download |
md5:f71a1d304e977d87fc465dd149efaa62
|
87.7 MB | Download |
md5:c8226a12003dbba300b8895b3618712c
|
73.2 MB | Download |
md5:8353fc369673deaae7c59ab4b7384b0e
|
3.0 kB | Preview Download |
md5:df77274e5ad9e67889165b663ea9f621
|
33.9 MB | Preview Download |
Additional details
Dates
- Created
-
2022-04-11
References
- Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3