GlobalHighPM₂.₅ (2021)
Authors/Creators
Description
Here is the first big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) global ground-level PM2.5 dataset over land for the year 2021. This dataset exhibits high quality, with a cross-validation coefficient of determination (CV-R2) of 0.91 and a root-mean-square error (RMSE) of 9.20 µg m-3 on a daily basis.
If you use the GlobalHighPM2.5 dataset in your scientific research, please cite the following reference (Wei et al., NC, 2023):
-
Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3
Notes
Files
Wei_et_al-NC-2023.pdf
Files
(37.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:8acc6b4a4790f90d3f8f73c4e0dcd322
|
3.2 GB | Preview Download |
|
md5:2045b0de62307670a9218f58f77b26f6
|
2.9 GB | Preview Download |
|
md5:853728735080bb1a19098647035fb251
|
3.2 GB | Preview Download |
|
md5:c9858ea27213fb8d0ca75fd8f3238548
|
3.0 GB | Preview Download |
|
md5:7bdb290e7ef815225b74ce2fe78f1e12
|
3.0 GB | Preview Download |
|
md5:7f2f8784b3e433f4a6bc3665962ac470
|
2.8 GB | Preview Download |
|
md5:a3499b614306a416667b3ce6f02edf97
|
3.1 GB | Preview Download |
|
md5:49d64f87a8ae569fbcd940a8c2b05121
|
3.2 GB | Preview Download |
|
md5:e3ba3d983d350bb9d22d3dccf93bbceb
|
2.9 GB | Preview Download |
|
md5:c27733b8b9fe65d2740b770466c53cbd
|
3.0 GB | Preview Download |
|
md5:d1427c9d6fe9f602ef8254232b058185
|
3.0 GB | Preview Download |
|
md5:60d3391b2f5be947b68fd066fe48fd36
|
3.1 GB | Preview Download |
|
md5:c9ffc7495436d3a645be73f3ebd40ed9
|
90.9 MB | Download |
|
md5:6ba5738750d90502f11a5fa5d49abe71
|
90.2 MB | Download |
|
md5:53c70264d1ddae3585417ced36121631
|
88.0 MB | Download |
|
md5:8519f6a4d4062f1382d4f5abfba2ed67
|
86.3 MB | Download |
|
md5:f3ff65990f86baabd718f9a861a53696
|
83.5 MB | Download |
|
md5:477b23ff1a4724666910bcd32253d18c
|
78.2 MB | Download |
|
md5:edf92d0b395e50b3e688e5361e69626e
|
82.5 MB | Download |
|
md5:69d19a7acd6e32c45673418729c0cec5
|
85.1 MB | Download |
|
md5:cfe55c8dcafa091dc7e954eac7e0dfe2
|
81.4 MB | Download |
|
md5:3f2886f17582f6fbdf50571cb5cc7498
|
82.2 MB | Download |
|
md5:e7264e8b6f245d8284f77ad1ae560733
|
87.8 MB | Download |
|
md5:0d010d8cb34a8acbf0f6c6df633597ee
|
88.0 MB | Download |
|
md5:ccb27d6182c9e93cae4150213809a882
|
70.5 MB | Download |
|
md5:8353fc369673deaae7c59ab4b7384b0e
|
3.0 kB | Preview Download |
|
md5:df77274e5ad9e67889165b663ea9f621
|
33.9 MB | Preview Download |
Additional details
Dates
- Created
-
2022-04-11
References
- Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3