Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published October 9, 2022 | Version v1
Conference paper Open

Orthogonality in Additive Echo State Networks

  • 1. University of Pisa

Description

Reservoir computing (RC) is a state-of-the-art approach for efficient training in temporal domains.
In this paper, we explore new RC architectures that generalise the popular leaky echo state network model (leaky-ESN) introducing an additive orthogonal term outside the nonlinear part of the ESN equation. We investigate the benefits of employing orthogonal matrices in ESNs both inside the nonlinearity and outside of it. We show empirically how to boost the memory capacity towards the theoretical maximum value while still preserving the power of nonlinear computations. Ergo, we optimise the compromise between computing with memory and computing with nonlinearity.
The proposed model demonstrates to outperform both leaky-ESN and orthogonal reservoir ESN models on tasks requiring nonlinear computations with memory.

Files

Orthogonality_in_Additive_Echo_State_Networks.pdf

Files (144.6 kB)

Name Size Download all
md5:0b2ba1c41a7dbd2c999371fc06b5af65
144.6 kB Preview Download