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Abstract. Reservoir computing (RC) is a state-of-the-art approach for
efficient training in temporal domains. In this paper, we explore new RC
architectures that generalise the popular leaky echo state network model
(leaky-ESN) introducing an additive orthogonal term outside the nonlin-
ear part of the ESN equation. We investigate the benefits of employing
orthogonal matrices in ESNs both inside the nonlinearity and outside of
it. We show empirically how to boost the memory capacity towards the
theoretical maximum value while still preserving the power of nonlinear
computations. Ergo, we optimise the compromise between computing with
memory and computing with nonlinearity. The proposed model demon-
strates to outperform both leaky-ESN and orthogonal reservoir ESN mod-
els on tasks requiring nonlinear computations with memory.

1 Introduction

Recurrent neural networks (RNNs) are a powerful deep learning tool for sequen-
tial data, successfully exploited in classification of time series, speech recogni-
tion, natural language, and many others. Training RNNs via stochastic gradi-
ent descent methods involves a great computational effort. Moreover, learning
long-term dependencies with RNNs is especially difficult, due to a fundamen-
tal problem known in the literature as the vanishing-exploding gradient issue
of RNNs [1]. Reservoir computing (RC) is an alternative paradigm for training
RNNSs, which elegantly circumvents the computational burden and the vanishing-
exploding gradient issue at once. A large reservoir of recurrent nonlinear units
is randomly initialised and left untrained. Input is fed into the reservoir, which
in turn develops an “echo” of nonlinear activations from which we readout the
past history of the input signal. Consequently, only an output layer needs to
be trained, as long as the reservoir is large and heterogeneous enough to en-
code the information provided by the input. Echo state networks (ESNs) are a
class of RC models that demonstrated over the years to be a powerful nonlinear
computational model [2, 3, 4]. The efficiency of ESNs made them appealing to
neuromorphic implementations [5], and low-power devices embedding [6], two
crucial assets for building a truly pervasive Al

In this paper, we push further the boundaries of ESNs, exploring new archi-
tectural variants that generalise well-established ESN models, such as the leaky-
ESN [7], and orthogonal reservoir ESNs [8, 9]. In particular, we study reservoir
dynamical equations where both the nonlinear term and the additive “leakage”
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term can include orthogonal state transformations. The isometric property of
orthogonal matrices makes them extraordinarily useful for propagating informa-
tion along deep architectures, and thus for learning long-term dependencies in
RNNs. This intuition led to a flurry of works focusing on unitary learning, i.e.
learning algorithms constrained into the manifold of unitary matrices (see, e.g.,
[10] and references therein). In RC, ESNs with orthogonal reservoirs have been
shown to produce comparable performance to standard ESNs, while enhancing
their memory capacity (MC) [8]. However, the possibility of exploiting orthog-
onal transformations outside the nonlinear term of the reservoir state update
equation still remains unexplored and motivates our analysis in this paper. A
related RC architecture is given by the leaky-ESN [7], where the nonlinear part
is added on top of the internal activations of the previous time step. Instead of
re-using the previous internal activations exactly as they are, the novel idea of
this paper is to filter it through an untrained orthogonal matrix. In this sense,
the leaky-ESN is a peculiar case where the orthogonal matrix is the identity ma-
trix. This idea turns out as simple as it is effective. We show empirically that
this approach leads to significantly outperform both leaky-ESN and orthogonal
reservoir ESN models, enhancing the MC towards the theoretical maximum,
and optimising the trade-off between long short-term memory and nonlinear
computation.

2 Additive reservoirs based on orthogonal matrices

We start our analysis by recalling the equations of a leaky-ESN with linear
readout, which reads as follows:

z[t] =atanh(pW,z[t — 1] + wWuft]) + (1 — @)zt — 1], (1)
z[t] =Wz [t]. (2)

The internal state z[t], input u[t], and output z[t] are, respectively, N,-dimensional,
N;-dimensional and N,-dimensional vectors of real values. Matrices W,., W;,,
are randomly instantiated and left untouched. In this paper, we initialise W,
with i.i.d. random uniformly distributed entries in (—1,1), and W, with i.i.d.
normally distributed entries with zero mean and standard deviation ﬁ Rooted
in the circular law from random matrix theory, this initialisation scheme for W,
ensures, in the limit of an infinitely large reservoir, that the spectral radius of
W.,. is 1. Therefore, the hyperparameter p can be thought as the spectral radius
of the effective recurrent matrix. While, given a training set {u[t], y[t]}7_,, the
readout matrix W, is trained via ridge regression [4] by means of the following
formula W, = YXT (XX + uI)~!, where X is a matrix of dimension N, x T,
containing all the internal states x[t] of the ESN driven by the input u[t] for
k=1,...,7,Y amatrix of dimension N, x T, containing all the target values
y[t], I is the identity matrix of dimension N, x N,., and p is the regularisation
parameter. In the reservoir state transition (1), the input scaling w is an hyper-
parameter entitled to rescale the weight of the current input into the reservoir

dynamics. The hyperparameter p is a positive real value controlling the amount



of nonlinearity into the reservoir and the contribution of the past activations.
ESNs work under the fundamental assumption of the echo state property (ESP),
a condition ensuring a unique stable input-driven response [2, 11]. In few words,
the ESP guarantees that the internal state z[t] is uniquely determined by the
entire past history of the input signal. Often in the literature it is set p < 1, and
in most cases this condition is correlated with the ESP. However, it worth to
mention that such a choice is in general neither a sufficient nor a necessary con-
dition for the ESP, but rather p should be optimised in synergy with the input
scaling w in order to ensure the ESP. The tuning between these two hyperpa-
rameters should place the model in a sweet spot between the edge of unstable
dynamics and slightly stable contractive dynamics where the ESP holds. The
hyperparameter « € (0, 1] is typically exploited to tune the internal temporal
characteristics of the network according to a given task [7].

In this paper we aim to explore the benefits of having a non-identical filter
for the linear additive part of the leaky-ESN model. In particular, we propose
the following modification of equation (1):

z[t] = atanh(paWaz[t — 1] + WWuft]) + (1 — a)ppWpz[t — 1],  (3)

where W 4 and W g respectively modulate the recurrence in the nonlinear and
in the additive terms. We consider the four combinations of W4, Wg to be
either orthogonal or random with i.i.d. entries normally distributed with zero
mean and standard deviation of ﬁ, where N, is the reservoir’ size. Random
orthogonal matrices are obtained by first generating a random matrix W with
i.i.d. uniformly distributed entries in (—1,1), and then applying a QR decom-
position, W = @QR. Therefore, the resulting () matrix is a random orthogonal
matrix. Note however that this procedure does not ensure to explore uniformly
the manifold of orthogonal matrices [12]. In both cases of random or random
orthogonal initialization, the values of p4 and pp in (3) regulate the spectral
radii of the W 4-recurrent part and W g-recurrent part, respectively. Note that
the model in (3) is a generalisation of the leaky-ESN model, since we can recover
it with the choice of W as the identity matrix with pg = 1. Analogously, the
model in (3) is also generalising orthogonal reservoir ESNs (ortho-ESN), which
can be obtained via setting an orthogonal W 4 with @ = 1. We denote the four
variants of the proposed model as: RandA-RandB, where both W4, Wpg are
random matrices; OrthoA-RandB, where W 4 is random orthogonal, and W g is
random; RandA-OrthoB, where W 4 is random, and W g is random orthogonal;
OrthoA-OrthoB, where both W 4, W are random orthogonal matrices.

In the following, we compare the performances of these four models between
each other, and against the leaky-ESN and the ortho-ESN models.

3 Experiments

Memory capacity. We consider a fully connected reservoir of N, = 100 neu-
rons. The input w[t] is an i.i.d. signal uniform in [—0.8,0.8] of discrete-time
length ¢ = 1,...,6000. We split 5000 time steps for training (excluding the very



first 100 to washout the initial transient), and 1000 for test. The MC is defined
as MC = 220:1 MCy, where M CY is the squared correlation coefficient between
the output zx[t] and the target yi[t] = u[t — k] computed along the test session.
The MC sum is computed up to & = 200. Each one of the four models has
been run for 10 different initialisations for each delay k, and the computed MC
has been averaged over these trials. For the calculation, we set spectral radii
pa, pp to 0.9 whenever W4, Wg are random (or kept to 1 whenever they are
orthogonal), and an input scaling of 0.1. No regularisation has been applied,
that is u = 0. This setting of hyperparameters has been tested as good for ESNs
in previous works [13]. Keeping fixed those, the leak rate « has been varied in
{4-107°: A=1,...,10, s = 1,2,3}. The results are plotted as blue dots in
Figure 1. The shadow of these curves represents a range of plus and minus 3
times the empirical standard deviation computed on the 10 trials. From these
simulations, two main insights arise. An orthogonal reservoir matrix W 4 makes
the memory capacity increase for o values approaching to 1, reaching a maxi-
mum value of 89.8 + 1.2, regardless of the matrix Wp. On the other hand, an
orthogonal matrix W makes the memory capacity peak for a values around
0.05, reaching a global maximum value of 98.25 &+ 0.22, regardless of the reser-
voir matrix W 4. Notably, the theoretical maximum value for a reservoir of N,
neurons has been proved to be N, [14], i.e. 100. This maximum is essentially
reached by the models with an orthogonal matrix W . Spikes in the standard
deviations for small values of « in RandB variants are due to some randomly
generated W g with a spectral radius slightly larger than one.
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Fig. 1: Memory Capacity averaged over 10 trials for the proposed ESN variants.

Nonlinear computations with memory. Here we test the ability of the
reservoir system to both retrieve the input signal from the past and at the same
time make nonlinear computations based on it. The input signal w[t] is i.i.d.
random uniform in [—0.8,0.8], and the task is to output the target signal of the
form y[t] = sin(v * u[t — 7]), where v quantifies the nonlinearity strength, and
7 measures the memory depth [15]. We consider 4 combinations of (7,log(v))
in order to span all the major behaviours, i.e. the 4 combinations of values

7 =1 (small delay), 7 = 30 (large delay), log(v)

= —2 (weak nonlinearity), and

log(v) = 1 (strong nonlinearity), where log is the natural logarithm. We consider
fully connected reservoirs of 100 units. We compare the four variants of the
proposed architecture against the leaky-ESN and the ortho-ESN. We optimise
the hyperparameters of all models via random search in the following ranges.




Input scaling w € (0.2,6); spectral radii p, pa, pp € (0.1,3); « generated via the
formula A -107%, with A uniformly random in (0.1, 1), and s uniformly random
in {0,1}, so that they vary in (1072,1). The only exception is the ortho-ESN
model, where it is kept &« = 1. The input signal has length 7000. We use the
first 5000 time steps for training (excluding the very first 100 to washout the
initial transient), the steps from 5001 to 6000 for validation, and the remaining
steps for testing. For all models, we run 1000 different trials to find the optimal
hyperparameter setting. Finally, we run 10 different initialisations with the best
hyperparameter setting found, train on the first 6000 time steps, and test the
trained models on the remaining time steps from 6001 to 7000. In Table 1 we
report the mean and standard deviation of these 10 computed NRMSEs on test.

Table 1: Mean and standard deviations of test NRMSE values over 10 trials.

Test NRMSE w (7, log(v)) (1,-2) (1,1) (30,-2) (30,1)

Leaky-ESN 3.45+0.79) - 107 (2.88 £0.62) - 9.524+0.11) - 107! (9.62+£0.29) - 107!

( ) ( ) ( )

Ortho-ESN (4.914£2.59)-107° (1.01+0.13)-107% (3.83+£0.12)- 107!  (4.90 £0.09) - 107!
RandA-RandB (6.38+£2.14) - 107> (3.38£2.10)-10~*  (1.64 £0.45) - 10~*  (5.034+0.32) - 10~!
OrthoA-RandB (3.114£1.55)-107° (2.37+£1.16)-10~* (3.83+£0.47) 107" (4.75+£0.40) - 10!
RandA-OrthoB (1.60£0.22) - 107 (1.83+0.21)-107% (1.76£0.24) - 1072 (2.11£0.12) - 107!
OrthoA-OrthoB (2.194£1.12)-107°  (2.65+2.20)-107*  (4.69 £0.34) - 1072  (2.19+£0.14) - 107!

From Table 1 we see that in the case of small delay 7 = 1 all the proposed
models outperform the benchmarks (leaky-ESN and ortho-ESN), apart from the
case of (7,log(v)) = (1, —2) where RandA-RandB gives comparable performance
to ortho-ESN. For large delay 7 = 30, the variants with a random Wpg are
prone to instabilities, so we set the additional condition p(Wpg) < 1, to avoid
huge values of the mean and standard deviation of NRMSE due to occasional
exploding dynamics. On the contrary, the variants with an orthogonal Wpg
exhibit reliable results. In general, the variants with orthogonal W g provide
the best performances. Particularly evident is the case of (7,log(v)) = (30, —2),
where the improvement is of almost two orders of magnitude w.r.t. the leaky-
ESN, and one order w.r.t. the ortho-ESN. Moreover, even in the challenging
case of strong nonlinearity log(r) = 1, and large delay 7 = 30, the resulting
performance is more than doubled w.r.t. ortho-ESN, and quadrupled w.r.t.
leaky-ESN.

4 Conclusions

In this paper, we have introduced a generalisation of the leaky-ESN model. We
explored the role of orthogonality outside of the nonlinearity in the additive term
of the leaky-ESN’s equation. Experimental results revealed the striking advan-
tages obtainable from this simple variant of leaky-ESN model by (i) essentially
reaching the theoretical maximum value of memory capacity, and (ii) accom-
plishing nonlinear computations without degrading the memory. The proposed
model is tested on a task that require nonlinear computations over the past



history of the input. The results show that this new architecture substantially
outperforms both the leaky-ESN and the orthogonal reservoir ESN models.

This work suggests several future directions of research that we intend to
explore in depth, among which to (i) investigate the proposed architecture with
structured orthogonal matrices (e.g. permutations) in order to provide more
efficient reservoir computers exploitable for neuromorphic, IoT low-power de-
vices and health-monitoring applications, (i) provide an exhaustive theoretical
analysis of the merits of orthogonality in additive state transition functions,
and finally (iii) consider the proposed model outside reservoir computing in the
context of fully trainable recurrent neural networks.
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