Published August 10, 2021 | Version v6
Software Open

Artifact for ICSE-22 submission "Striking a Balance: Pruning False-Positives from Static Call Graphs"

Creators

  • 1. Anonymous

Description

This artifact contains 3 compressed folders for the code, data and results that accompany the paper. The VirtualBox VM image already contains the code, data, benchmarks and has all the dependencies resolved. Please read the README.md file for information about the artifact.

Code

The code to reproduce the experimental results in the paper. 

Data

This includes the following:

1) Pre-computed call-graphs

2) Pre-trained models for the cg-pruner

3) Train and test program lists

The benchmark set used is the publicly available NJR-1 dataset (https://zenodo.org/record/4839913) 

Results

This contains detailed (i.e. per-benchmark) results for the paper, including the data points used to plot the graphs.

(Note: The artifact was tested with WALA v1.5.7)

Files

icse2022-paper1207.pdf

Files (11.2 GB)

Name Size Download all
md5:ea8689582030263833f659ddba536cef
6.5 MB Download
md5:1d1bdebfe6697fe82a8388bfca2d8e66
245.5 MB Download
md5:b35b584eec1f026ca2a59767d5e15e05
820.4 kB Preview Download
md5:d1ba9f3219bf57806800a673746fd394
569 Bytes Preview Download
md5:5539a56f2a2bad23e2ba85c6c8b16abd
1.6 kB Download
md5:ec81ac40571ceb5eac5e76252a49b6ed
12.0 kB Preview Download
md5:23f17847bd1b07f790470c895e7a517b
201 Bytes Preview Download
md5:fa0c7132ec09ef41ed25122988321fb4
3.6 MB Download
md5:e8bd2d6e71b9a66cb04da8664dacef5d
424 Bytes Preview Download
md5:a39e87ed2c6b30e2f7f1eafc55795102
10.9 GB Download