
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Striking a Balance:
Pruning False-Positives from Static Call Graphs

Anonymous Author(s)

ABSTRACT
Researchers have reported that static analysis tools rarely achieve
a false-positive rate that would make them attractive to developers.
We overcome this problem by a technique that leads to reporting
fewer bugs but also much fewer false positives. Our idea is to prune
the static call graph that sits at the core of many static analyses.
Specifically, static call-graph construction proceeds as usual, after
which a call-graph pruner removes many false-positive edges but
few true edges. The challenge is to strike a balance between being
aggressive in removing false-positive edges but not so aggressive
that no true edges remain. We achieve this goal by automatically
producing a call-graph pruner through an automatic, ahead-of-time
learning process. We added such a call-graph pruner to a software
tool for null-pointer analysis and found that the false-positive rate
decreased from 73% to 23%. This improvement makes the tool more
useful to developers.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
• Computing methodologies → Supervised learning by classifi-
cation.
ACM Reference Format:
Anonymous Author(s). 2021. Striking a Balance: Pruning False-Positives
from Static Call Graphs. In Proceedings of The 44th International Conference
on Software Engineering (ICSE 2022). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Problem. Christakis and Bird [11] interviewed developers

about program analysis tools and they concluded:
Program analysis design should aim for a false-
positive rate no higher than 15–20%.

Other empirical studies have found similar results [6, 21, 35]. Un-
til now, this goal has been particularly hard to achieve for static
analyses, which are tools that analyze programs without executing
them.

As a motivating experiment, we tried Wala [40], which is one of
the best tools for static analysis of Java bytecode, on a subset of the
NJR-1 benchmark suite [30]. For each benchmark, we compared
the edges in the static call graph with the edges found by executing
the benchmark. With a context-insensitive analysis, Wala has a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

false-positive rate of 76%, while with a better but also much slower
context-sensitive analysis, the false-positive rate is 70%. Those re-
sults are disappointing though we must emphasize that call graphs
are usually fed to client tools rather than directly to developers. So,
we did a second experiment to see how the high false-positive rate
of call-graphs affects client tools. Specifically, we implemented a
version of a static analysis for warning about null-pointer problems
[18] that is a client of the context-insensitive call-graphs produced
byWala. We ran this tool on the same subset of NJR-1 and again had
disappointing results: 60 bugs among 223 warnings, on average, so
a false-positive rate of 73%. We can easily imagine how a developer
will tire of investigating warnings that in nearly three of every
four cases are false alarms. However, we can also see a glimmer of
hope: if we can reduce the false-positive rate of static call-graph
constructors, we may be able to move client tools closer to the goal
of a false-positive rate of 15–20%.

Our Idea. Our approach stems from another conclusion by Chris-
takis and Bird [11] who reported a preference of developers:

When forced to choose between more bugs or
fewer false positives, they typically choose the
latter.

This quote inspired our idea for how to improve the false-positive
rate: we will report fewer bugs but also much fewer false positives.
Indirect support for this idea comes frompreviouswork that showed
that practical static analyses aren’t totally sound [27, 37] and there-
fore may miss bugs. Thus, developers expect bug reports to be
incomplete so reporting fewer bugs seems acceptable.

We want to reduce the false-positive rate in a modular way that
leaves existing call-graph constructors unchanged. This brings us
to our idea of a call-graph pruner that statically post-processes a
static call graph by removing many false-positive edges but few
true edges. The challenge is to strike a balance between being
aggressive in removing false-positive edges but no so aggressive
that no true edges remain. Additionally, we have to do better than
removing edges at random because random removals will leave the
false-positive rate unchanged.

How can we design a call-graph pruner?

Our Approach. We execute an automatic, ahead-of-time learning
process on results from both a static and a dynamic call-graph
constructor. The outcome is a call-graph pruner that works as
follows. The call-graph pruner determines the probability that an
edge in the call graph is a false positive, and if this probability is
above a threshold, then the call-graph pruner removes the edge.
We can vary this threshold and thereby tune the call-graph pruner.

In contrast to previous work on using a dynamic analysis to
improve a static analysis [4, 10, 13], we use the dynamic call-graph
constructor only in an ahead-of-time training phase and only on a
training set of programs. Once the training phase has produced a
call-graph pruner, the combination of the call-graph constructor

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Program

 Call-graph
construction

tool

call-graph
pruner

Call-graph
False-positive rate: 76%
True-edges missed: 5%

Call-graph
False-positive rate: 34%
True-edges missed: 34%

Balanced call-graph
construction tool

new

Figure 1: Overview of our technique

and the call-graph pruner is itself a static analysis, as illustrated in
Figure 1.

Our Contributions and the Rest of the Paper. We begin with an
example of how a call-graph pruner works (Section 2) and then we
detail our contributions:

• We present the design (Section 3) and implementation (Sec-
tion 4) of a tool that produces call-graph pruners.

• We show experimentally (Section 5) that adding a call-graph
pruner to a client tool can significantly decrease the false-
positive rate, in one case from 73% to 23%. Specifically, we
added a call-graph pruner to the tool for warning about
null-pointer problems, after which we got 15 bugs among
20 warnings, on average. Thus we reported 45 fewer bugs
but also 158 fewer false positives.

• We show experimentally (Section 5) that the overhead of
adding a call-graph pruner is 18%.

We end with a discussion of related work (Section 6) and our con-
clusion (Section 7).

Significance. Call-graph pruners improve static call-graphs sig-
nificantly and thereby make client tools more useful to developers.

2 EXAMPLE
Now we give an example of a call-graph pruner, how it works on a
example call graph, and how it affects a client analysis for warning
about null-pointer problems. Our example program in Figure 2,
shown in full in the Appendix, has three classes A, B, C, each of
which has a method foo, and a main method that contains a method
call x.foo(x.f). The variable x is assigned to an object of type C,
but when the access x.f happens, the field A.fmay be uninitialized
hence null. Thus the call x.foo(x.f)may pass null as an argument
to C.foo, which, in turn, at the call c.toString(), may throw a
NullPointerException. The program has two additional methods,
including getObjC, that we omitted from Figure 2.

Null-Pointer Warnings. As we mentioned in Section 1, we im-
plemented a version of a static analysis for warning about null-
pointer problems. This analysis finds null-pointer problems that
stem from uninitialized fields, like the problem with c.toString()
that is caused by the uninitialized field A.f. If we run this tool on
the example program, we get three warnings, one for each call of

...
A x = getObjC();
x.foo(x.f);

class A {

 A f;
 foo(A a){
 a.toString();
 }}

class B extends A {

 foo(A b){
 b.toString();
 }
 }

class C extends B {

 foo(A c){
 c.toString();
 }
 }

DECISION TREE

dest-node-in-deg > 2.5

src-node-out-deg > 2.5 10%

55%

70%

STATIC-ANALYSIS CALL-GRAPH

70%

T

T

F

F

dest-node-in-deg > 1.5

40%

F T

40% 10%

Figure 2: Example call-graph and call-graph pruner

toString in the foo methods. One of them is a true warning but
the other two are false alarms. Let us investigate how that could
happen and what a call-graph pruner can do about it.

Call Graph. The null-pointer tool uses a static call-graph con-
structor that built the call graph shown in Figure 2. In a call graph,
each node is a method, and each edge is a directed edge from one
method to another. Such an edge represents a call that may happen
during the execution of the program.

The call-graph constructor examines the entire program, includ-
ing the methods that we omitted from Figure 2. We skip the details
of how this works and instead we focus on the constructed call
graph. Specifically, in Figure 2 we focus on the four nodes for the
main method, A.foo, B.foo, and C.foo. The call-graph has an edge
from the main method to each of A.foo, B.foo, and C.foo, as well
as an edge some other method to B.foo and a couple of edges from
some other methods to A.foo. The edge from main to C.foo is a
true edge, while the edges from main to A.foo and from main to
B.foo are false positives.

By the way, the edges from main to each of A.foo, B.foo, and
C.foo can arise from difficult-to-analyze methods, one of which is
part of the full example program in the appendix, and another is:

A getObjC() {
return (𝑏1) ? new C() : ((𝑏2) ? new B() : new A())

}

where 𝑏1 is a Boolean expression that always evaluates to true.

The Null-Pointer Analysis in more Detail. Based on the call graph
in Figure 2, the null-pointer analysis derives that x.foo(x.f) may
call any of A.foo, B.foo, and C.foo. Then the null-pointer analysis
uses the rule that

if a field is not initialized by the end of a con-
structor, it is marked as Uninitialized; and if an
Uninitialized field is dereferenced, the analysis
gives a null-pointer warning.

Thus, the analysis concludes that each of the foo methods may be
passed null as an argument, and thus it issues a warning for every
one of those methods.

Call-Graph Pruner. The goal of a call-graph pruner is to remove
edges from the call-graph, preferably many false-positive edges
and few true edges. The key component of a call-graph pruner is

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Striking a Balance:
Pruning False-Positives from Static Call Graphs ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a classifier that computes the probability that an edge is a true-
positive. Based on that probability, a call-graph pruner will decide
whether to keep or to remove the edge. Figure 2 shows a classifier
that is represented as a decision tree. Each internal node of the
decision tree asks a true-false question about a call-graph edge. The
recursive decision process begins in the root of the decision tree; if
the answer to the question at the root is false, we move to the left
subtree, while if the answer is true, we move to the right subtree.
When we reach a leaf, we find the probability that the call-graph
edge is a true-positive. Based on this probability, we will decide
whether to keep or remove the call-graph edge.

The decision tree in Figure 2 has three internal nodes that are la-
beled with questions about dest-node-in-deg, which is the in-degree
of the destination node of the edge, and about src-node-out-deg,
which is the out-degree of the source node of the edge. For exam-
ple, the edge from main to C.foo has destination-node in-degree
1 and source-node out-degree 3. This gives us the path false-true-
false, which assigns the edge the probability 70%. Similarly, the
edges from main to A.foo and B.foo get probabilities 10% and
40%, respectively. The call graph in Figure 2 shows those three
probabilities.

Let us set a threshold of 50% for when we deem an edge to be
a false-positive: if the probability of being a true-positive is below
50%, we remove the edge. Then the call-graph pruner will remove
the edges from main to A.foo and B.foo. Hence, the null-pointer
analysis will issue just a single warning, and indeed a true warning,
namely for the call of toString in C.foo.

3 CALL-GRAPH PRUNERS
Now we describe how we use machine learning to produce a call-
graph pruner.

3.1 Overview
We will use Program to denote the set of Java bytecode programs.

A call-graph𝐺 ∈ CallGraph is a multi-graph in which each node
represents a method and each edge represents a potential transfer
of control at a method call. Two nodes can have multiple edges
between them because of multiple method calls. Each edge has a
label that identifies the method call site.

We distinguish between two kinds of call-graph constructors
that have the same type:

StaticCallGraphConstructor = Program → CallGraph

DynamicCallGraphConstructor = Program → CallGraph

Here, an element of StaticCallGraphConstructor constructs a call
graph without running the program, while, in contrast, an element
of DynamicCallGraphConstructor runs an instrumented version
of the program on one or more inputs and examines output from
the instrumentation.

The key component of each call-graph pruner is a classifier. A
classifier 𝐶 ∈ Classifier is a function that maps a vector of feature
values for an edge to a probability that the edge is a true-positive.
In our case, such a vector has 11 elements that we will define in
Section 3.3.

Our tool for generating classifiers implements a function of this
type:

classifier generator : (StaticCallGraphConstructor ×
DynamicCallGraphConstructor ×
Set[Program])
→ Classifier

Our classifier generator executes an automatic, ahead-of-time learn-
ing process on results from running both a static and a dynamic
call-graph constructor on a training set of programs. We will detail
this process in Section 3.2.

Once we have a classifier, we can use it in a call-graph pruner of
this type:

call-graph pruner :
(CallGraph × Classifier × Threshold) → CallGraph

Algorithm 1 shows how a call-graph pruner works. Intuitively, a
call-graph pruner uses a classifier to determine the probability that
an edge in a static call graph is a true-positive. If that probability
is below a given threshold 𝑇 ∈ Threshold, the call-graph pruner
removes the edge.

Algorithm 1: Call-graph Pruner
1 Inputs: CallGraph 𝐺 , Classifier 𝐶 , Threshold 𝑇
2 let 𝐺 ′ be a copy of 𝐺
3 for every edge 𝑒 in 𝐺 do
4 𝑣 = the feature values for 𝑒
5 if 𝐶 (𝑣) < 𝑇 then
6 remove 𝑒 from 𝐺 ′

7 Output 𝐺 ′

The threshold parameter enables us to explore different levels of
aggressiveness in removing edges. For our example in Figure 2, we
discussed a threshold of 50% in Section 2, which led to the removal of
two edges. We could also use a lower threshold of 20%, which would
lead to the removal of a single edge, namely the one from main
to A.foo. The challenge is to strike a balance between removing
many false-positive edges and keeping many true-positive edges. In
Section 5 we will show results from an experimental investigation
of how to choose a good threshold.

Notice that we use a static call graph constructor, a dynamic call
graph constructor, and the training set of programs for the sole
purpose of generating a classifier, while those items are no longer
needed when we use the call-graph pruner.

3.2 Our Classifier Generator
We cast the edge-pruning problem as a classification problem for
which learning a classifier can be done with machine learning. We
proceed in three steps.

In the first step, we run the static and dynamic call-graph con-
structor on every program in the training set. The result is a set of
pairs of call graphs: each pair consists of a static call graph and a
dynamic call graph.We use the dynamic call graph as an approxima-
tion of the ground truth: if a static call-graph edge is also present in

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Edge f1 ... fk Label

e1 10 ... 0.3 1

e2 8 ... 0.7 0

...

Training Programs

Program-1 Program-n

Compute Features

Concatenate into single Training Set

Trained
Classifier

Train using Classification Algorithm

Static
call-graph

Dynamic
call-graph

Edge f1 ... fk Label

e3 7 ... 0.1 0

e4 1 ... 0.6 1

...

Compute Features

Static
call-graph

Dynamic
call-graph

Figure 3: Classifier Generator workflow

the dynamic call graph, we view it as a true-positive, and otherwise
as a false-positive.

In the second step, for each program, we construct a table in
which each row represents a static-call-graph edge. Figure 3 il-
lustrates this table. The last column in each row (titled Label in
Figure 3) contains a label of 1 or 0, based on whether the edge
exists in the dynamic call-graph. The remaining columns (titled
𝑓1 to 𝑓𝑘) represent the set of features of the static call-graph edge.
The example in Figure 2 uses two features: dest-node-in-deg and
src-node-out-deg; we will discuss other features below. We can view
each row in the table as a vector of feature-values. Concatenating
the tables of each individual program gives us a single large training
dataset of call-graph edges with ground truth labels. This training
dataset consists of a large number of pairs (𝑥𝑒 , 𝑦𝑒), where 𝑥𝑒 is a
vector of feature values corresponding to a static call-graph edge,
and 𝑦𝑒 is a prediction of whether it is a false-positive or not. Our
problem is now expressed in a format where it can be cast as a
machine-learning classification problem [24].

In the third step we run an off-the-shelf machine-learning tool
on the table constructed in second step. The result is a classifier
that for any edge assigns a probability that it is a true-positive.
We picked random forests [16] (ensembles of Decision Trees). One
might try other approaches, which we leave to future work. Our
goal with this step is to show that an off-the-shelf machine-learning
tool is sufficient to get good results.

Our classifier generator can take any static call-graph constructor
as input. For example, we have used the call-graph constructors
WALA [40], Doop [7], and Petablox [28] as inputs and generated a
call-graph pruner for each one.

The complexity of generating a classifier based on a training set
with 𝑛 edges is 𝑂 (𝑛 log𝑛) [16].

Feature Description
src-node-in-deg number of edges ending in caller
src-node-out-deg number of edges out of caller
dest-node-in-deg number of edges ending in callee
dest-node-out-deg number of edges out of callee
depth length of shortest path from main to caller
repeated-edges number of edges from caller to callee
L-fanout number of edges from the same call-site
node-count number of nodes in 𝐺
edge-count number of edges in 𝐺
avg-degree average src-node-out-deg in 𝐺
avg-L-fanout average L-fanout value in 𝐺

Figure 4: Our feature set

3.3 Our Feature set
Now we describe how we designed the feature set that both our
classifier generator and our generated call-graph pruners use.

A feature is information about a static-call-graph edge that may
help predict whether the edge is a true-positive. We would like our
feature set to capture important context and semantic information
about a call-graph edge. Encoding important semantic information
as features is a commonmachine learning practice for incorporating
domain knowledge into the learning process. For example, since
dynamic dispatch is likely to affect the false-positive probability of
a call-graph edge, we should add features that capture information
about the targets of a method call. Using the context information of
a graph edge has been useful for the related task of selective context
and heap sensitivity in pointer-analysis [20], and we consider it a
good criteria for picking features. Context information can be local
by describing the neighborhood of the edge, or global by describing
the call-graph that the edge is a part of. In addition to capturing
context and semantic features, we identify three criteria that we
want our feature set to satisfy:

(1) linear-time computation complexity,
(2) interpretable and generalizable, and
(3) black-box.

The time-complexity guideline is particularly important given that
some of our benchmarks can have several hundred thousand call-
graph edges. Interpretability gives us an understanding of which
call-graph edges are being dropped, and generalizability ensures
that what is learned for the training edges also applies to call-graph
edges of unseen programs. The black-box criterion implies that the
features should only be designed on the output call-graph, and not
on some internal state or representation of a tool. This allows us
to post-process the results without being specific to a particular
algorithm or tool. Using these criteria, we arrived at the following
features for an edge.

Figure 4 presents our feature set for an edge in a static call graph
𝐺 , where the edge is from a caller method caller to a callee method
callee. The node for the main method in 𝐺 is main. The first seven
features describe local information while the last four describe
global information. Note that the L-fanout of an edge is the number
of outgoing edges at the call-site of that particular edge, whereas

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Striking a Balance:
Pruning False-Positives from Static Call Graphs ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

src-node-out-deg is the number of outgoing edges from all the
call-sites of an entire source method.

Our selection process started with a much longer list of features
that all satisfy the three criteria listed above. We picked from that
list the ones that helped the most with removing false-positives.
Our process used the training set as case studies to find the main
reasons why tools give false positives. The result was the eleven
features in Figure 4.

4 IMPLEMENTATION AND DATASET
Static Call-Graph Constructors. We used the static call-graph con-

structors WALA [40], Doop [7], and Petablox [28]. In each case we
used the default setting, which implements 0-CFA for methods that
are estimated to be reachable from the main method and without
any special handling of reflection. Those tools produce significantly
different call graphs and therefore provide good diversity.

Reflection. In preliminary experiments, we found that enabling
special handling of reflection in the static call-graph constructors
introduces many false-positive edges in the call graphs. Our gener-
ated classifiers tend to assign each of those edges a low probability
of being a true-positive, and therefore our call-graph pruners will
correctly remove most of them. Therefore, special handling of re-
flection presents no additional challenge for call-graph pruning and
we decided to go with the default setting of each static call-graph
constructor.

Dynamic Call-Graph Constructor. We used the open-source tool
Wiretap [22] to instrument the Java bytecode and thereby enable
dynamic call-graph construction. Next, we ran the instrumented
bytecode and collected data about the run, particularly about the
method calls.

Standard Library. The Java standard library is large and has the
potential to dominate the measurements for every benchmark,
which is counterproductive. So, when we do our measurements,
we omit nodes from the standard library as well as edges between
standard library nodes. We preserve aspects of the edges to and
from the standard library in the following way. For every path of
the form

𝑣 → ⟨. . . standard library nodes . . . ⟩ → 𝑤

where 𝑣,𝑤 are nodes outside the standard library, we create a single
edge from 𝑣 to𝑤 .

Random Forest Classifier. Our classifier generator uses the Ran-
dom Forest algorithm [16] implemented with the Scikit-Learn [31]
library (v0.21.3). The Random Forest algorithm works as follows: it
trains several decision-trees using Bagging [8], and makes predic-
tions by a “majority vote” across the decision trees. The training
took 4 minutes. We tuned the hyper-parameters using Random
Hyper-Parameter Search [5] with 4-fold cross-validation on the
training set. We list the chosen hyper-parameters in the appendix.

Dataset. Our dataset consists of 141 programs from the NJR-1
benchmark suite [30], of which we used 100 programs for gener-
ating three call-graph pruners and the remaining 41 programs for
our evaluation. We selected those 141 programs from the 293 NJR-1
programs according to the following criteria:

• consists at least 1,000 methods and at least 2,000 static call-
graph edges according to Wala,

• executes at least 100 distinct methods at runtime, and
• has high coverage: executes a large percentage of the meth-

ods that are reachable from the main method according to
Wala; for our benchmarks, the coverage is 68%, on average.

Each program consists of 560,000 lines of code, on average (not
counting the standard library). Inmore detail, each program consists
of the main application, which is 8,000 lines of code, on average,
in addition to third-party libraries which account for an estimated
552,000 lines of code, on average.

The total number of static-call-graph edges (not counting the
standard library) that are reachable from the main methods of the
141 programs is 1.3 million. For our classifier generator, each edge
from 100 of those programs is a data point, which is 860,000 edges.
Note that manual creation of ground truth about those 860,000
edges infeasible.

Large Benchmarks. Among the 100 programs that we use for
generating classifiers, a handful have many call-graph edges. This
gives them the potential to dominate how the classifiers work. To
overcome this, we randomly sample 20,000 edges from programs
with more than 20,000 edges. Notice that this sampling is done only
during generation of call-graph pruners, while we use all the edges
from the 41 programs that we use for evaluation.

Analysis Time. Running the three static call-graph constructors
and the dynamic call-graph constructor on all the programs takes
four days of compute time.

Precision and Recall. We estimate the quality of a static call-graph
using the standard notions of precision and recall. In our setting, if
𝑆 is the edge set produced by a static call-graph constructor, and
𝑊 is the edge set produced by Wiretap, then:

Precision =
|𝑆 ∩𝑊 |

|𝑆 | Recall =
|𝑆 ∩𝑊 |
|𝑊 |

The rate of false-positives is (1−Precision). We compute the average
precision and recall values for the entire test-set by taking the
arithmetic mean over the precision and recall values of individual
programs.

Figure 5 shows a histogram of the original precision and recall
scores for WALA on the 41 individual programs of the test set. Note
that the precision values vary significantly, but almost all programs
get below 40% precision. Hence, there is a lot of scope for improving
the precision. The recall is close to 100% for most programs, but
low for some due to heavy use of reflection, etc.

5 EXPERIMENTAL RESULTS
In this section, we discuss our experimental results that validate
the following claims.

(1) Our generated call-graph pruners for WALA, Doop, and
Petablox produce call graphs with balanced 66% precision
and 66% recall.

(2) Our generated call-graph pruners are significantly better
at boosting precision than context-sensitive analyses, and
have a much smaller overhead.

(3) The precision improvement is consistent across the test set.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0.0 0.2 0.4 0.6 0.8
Original Precision

0

1

2

3

4

5

6

7

Nu
m

be
r o

f b
en

ch
m

ar
ks

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Original Recall

0

5

10

15

20

25

30

35

Nu
m

be
r o

f b
en

ch
m

ar
ks

Figure 5: Precision and recall for 41 test programs.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
New Precision

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

be
r o

f b
en

ch
m

ar
ks

0.0 0.2 0.4 0.6 0.8 1.0
New Recall

0

2

4

6

8

10

12

Nu
m

be
r o

f b
en

ch
m

ar
ks

Figure 6: Precision and recall after call-graph pruning.

(4) The call-graph pruner enables a monomorphic call-site
client to balance its skewed 52% precision and 93% recall to
a more balanced 68% precision and 68% recall.

(5) The call-graph pruner enables a null-pointer analysis to
reduce its average warning count from 223 to 20, while
increasing precision from 27% to 77%.

All experiments are run on a separate test set of 41 programs
which were not used during training. The experiments were carried
out on a machine with 24 Intel(R) Xeon(R) Silver 4116 CPU cores at
2.10GHz and 188 Gb RAM. A minimum RAM size of 32Gb is essen-
tial for ensuring that the static analyses run in reasonable time. The
code, lists of train and test programs, pre-computed call-graphs and
instructions on reproducing the experiments are available here [3].
The NJR-1 dataset is available here [39].

5.1 Main Result
Figure 7 gives the main result of the paper: a call-graph pruner can
be successfully used to boost precision and to balance the goals of
precision and recall for the 0-CFA call-graph analysis of WALA,
Doop and Petablox. The plot is used to represent the precision and
recall values of various tools, wherein all precision and recall values
are reported as averages over the test-set programs. The black cross
marks the WALA 0-CFA analysis (23.8% Precision, 95.3% Recall),
the green triangle marks the Doop 0-CFA analysis (23.1% Precision,
92.6% Recall) and the blue circle marks the Petablox 0-CFA analysis
(29.8% Precision, 88.8% Recall). They all have close to perfect recall,
but very poor precision. The red plus sign marks the WALA 1-CFA
analysis (29.6%. 95.4%). The black curve represents the precision-
recall trade-off points obtained when a call-graph pruner is applied

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

call-graph pruner on Wala
call-graph pruner on Doop
call-graph pruner on Petablox
Baseline Wala 0CFA
Wala 1CFA

Baseline Doop 0CFA
Baseline Petablox 0CFA
Wala Equal Precision-Recall point
Doop Equal Precision-Recall point
Petablox Equal Precision-Recall point

Figure 7: Main Result for the WALA, Doop and Petablox
static analysis tools. The baseline precision-recall values for
the 3 tools, along with the precision-recall curve obtained
after applying a call-graph pruner (averaged over all test
programs)

to the WALA 0-CFA output. The original WALA-0CFA output is a
single point on the precision-recall graph, but the call-graph pruner

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Striking a Balance:
Pruning False-Positives from Static Call Graphs ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

gives a curve instead. This is because the call-graph pruner gives a
probability score for each edge being in the ground-truth call-graph,
and by setting different thresholds (i.e. cutoffs below which an edge
is removed), we can obtain different points on the precision-recall
curve. Joining all these different points gives us the black curve
in the figure. Setting a low-probability threshold for accepting an
edge, gives us points near the left end of the black curve, because
we accept a large percentage of edges, thereby giving us higher
recall but lower precision. Setting a high-probability threshold gives
us points near the right end of the curve because we accept only
very few edges which are very likely to be in the ground-truth call-
graph, and this gives us high-precision and low recall. The green
and blue curves represent the precision-recall trade-off obtained
by applying the call-graph pruner to the Doop and Petablox call-
graphs respectively, and the case is very similar to the black WALA
curve.

These curves which trade-off recall for precision show that the
classifier has assigned probabilities meaningfully. In contrast, a
tool that randomly assigns probabilities to edges would result in
a curve that goes straight down to zero recall without improving
any precision. This is because it results in a random removal of
edges, which keeps the ratio of true-positives (i.e. precision) the
same. Boosting precision requires the ratio of false-positive edges
in the removed edge set to be higher than the rest of the edges.

There are 2 particularly interesting points on the black (WALA)
curve in Figure 7. The first is the one marked by the black (WALA)
square (66.0% Precision, 66.0% Recall), which represents the point
with balanced Precision and Recall. Such a point will be useful to any
client analysis which values both precision and recall equally. As
compared to the original WALA 0-CFA (black-cross), this point has
over 72% of the edges from the original call-graph removed, and out
of the removed edges, less than 10% are true positives. This point is
at a 0.45 probability threshold. Similar points for Doop and Petablox,
marked by a green square (hidden behind black square) and blue
square respectively, are at (66.2% Precision, 66.2% Recall) and (66.4%
Precision, 66.4% Recall) respectively. A second interesting point is
the right-most point on the curve after which recall starts dropping
faster, represented by a black star (50% Precision, 92% Recall). Such
a point would be useful for a client analysis that needs to increase a
little precision, without losing much recall. Similar points for Doop
and Petablox, marked by a star, are at (50% Precision, 88% Recall)
and (50% Precision, 87% Recall) respectively.

Both these points give better precision-recall trade-offs than the
1-CFA analysis point. The 1-CFA is limited in its ability to boost
precision because it is constrained to be sound and not lose any
recall. Further, our call-graph pruner adds an overhead of 18% to the
WALA 0-CFA analysis, whereas moving to a 1-CFA analysis adds
292% overhead. Prior research also finds that context-sensitivity
increases analysis time by many folds [26].

For completeness, we also ran this experiment for WALA’s RTA
implementation and it gets similar results (that we show in the
supplementary material). Since the three tools show similar charac-
teristics, we only present numbers for the WALA 0-CFA call-graph
in the rest of this section. The corresponding graphs for Doop and
Petablox are available in the supplementary material.

0.0 0.2 0.4 0.6 0.8 1.0
Cutoff

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Precision
Recall

F-Score

Figure 8: Probability cutoff plotted vs Precision, Recall and
F-score curves for WALA

Picking a Cutoff value. Figure 8 plots the cutoff values vs Preci-
sion, Recall and F-score. It shows what values each of these metrics
takes at every cutoff value, as well as what the expected cutoff
would be for a given target Precision, Recall or F-score. For exam-
ple, by looking at the figure, we can say that to obtain an expected
Precision of 60%, we can set a cutoff value of 0.4. At this point we
would get a Recall of approximately 75% and F-score of around 65%.
This graph also shows that the point with equal precision-recall is
also very close to the point with maximum F-score.

Human-Interpretable Explanation of the Classifiers. We can give
a human-interpretable explanation of the main aspects of the Ran-
dom Forest classifiers that were learned in the experiment. In each
case, the top-level decisions center around the following generic
classifier:

if ((L-fanout > 𝑚) ∧ (dest-node-in-deg > 𝑛)) then 0 else 1

The above expression says that if an edge has L-fanout greater
than 𝑚 and destination-node in-degree greater than 𝑛, then the
probability that it is a true edge is 0, and otherwise 1. For each of
the static call-graph constructors, we can identify the constants𝑚
and 𝑛:

Wala:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 9.5)) then 0 else 1

Doop:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 16.5)) then 0 else 1

Petablox:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 20.5)) then 0 else 1

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Call-graph tool Precision Recall
WALA 0-CFA 51.8% 92.6%
WALA 0-CFA + call-graph pruner 67.7% 68.4%

Figure 9: Impact of improved call-graph precision on a
monomorphic call-sites client

5.2 Precision and Recall for individual
programs

Figure 6 gives a histogram of the precision and recall scores of
individual programs when a call-pruner is used to prune the WALA
call-graph at the balanced precision-recall point (marked by the
black square in Figure 7). Most of the programs get at least 50%
precision, and a several even reach the 70% precision goal. Contrast
this to the Precision in Figure 5 where almost all programs fail to
cross the 40% precision point. By using a call-graph pruner, 31 out
of the 41 programs have their precision score boosted by at-least
2 times their original precision score. No benchmark gets a worse
precision.

As expected, the recall scores from Figure 6 dropped as compared
to Figure 5. However, most programs still get at least 50% recall,
implying that they retain a good portion of their true edges. Note
that it is impossible to improve recall using a call-graph pruner
since it cannot find new edges that WALA did not find.

Thus, a significant majority of the individual programs consis-
tently get a large precision improvement without loosing too much
recall, and achieve a better precision-recall balance. The Doop and
Petablox graphs have similar characteristics and are shown in the
supplementary material.

5.3 Effect on Client Analyses
Next, we look at the effect of improved call-graph precision on the
monomorphic call-site detection and null-pointer analysis clients.

Monomorphic call-site client. This client is based on the WALA-
generated 0-CFA call-graph, and it uses the dynamic analysis as the
ground-truth. Figure 9 give the precision and recall of a monomor-
phic call-site client with and without the call-graph pruner. The
call-graph pruner helps the client boost precision from 52% to 68%
and balance its goals of precision and recall.

Applications of the monomorphic call-sites client include devir-
tualization and inlining. Since the call-graph analysis is never sound
in practice [27], these applications require some safety checks, re-
sulting in overheads. For example, if devirtualization is used for
optimization, run-time checks need to be inserted to ensure correct-
ness [19]. Higher precision for the monomorphic call-sites client
implies that more of the call-sites declared monomorphic by the
static analysis actually turn out monomorphic in the ground-truth.
This in turn implies that whenever we incur the overhead of inlining
or devirtualization, we are also more likely to realize its benefits.

Null pointer analysis. This analysis is based on the paper by Hu-
bert et. al [18]. It is implemented in WALA, and is used to find null-
pointer errors originating from uninitialized instance fields. The
analysis is context-insensitive, field-insensitive and flow-sensitive.

ID Warnings True-Positives in a sample of 10
Before After Before After

B1 137 12 2 10
B2 365 31 4 5
B3 190 15 2 8
B4 308 44 7 10
B5 204 16 0 10
B6 429 42 0 7
B7 404 136 7 10
B8 70 10 0 0
B9 231 10 0 9
B10 102 34 5 8

Average 2.7 7.7

Figure 10: Totalwarning counts and amanual classification of
a sample of 10 warnings for the null-pointer analysis before
and after applying a call-graph pruner

It only reports potential null-pointer dereferences in application
code, and not for the standard library.

The original WALA call-graph gives us, on average, 223 null
pointer warnings per program. The high volume of warnings makes
it cumbersome for developers to manually inspect and in practice
this results in developers ignoring the tool output entirely [6, 21].
Using the call-graphs produced after pruning gives us much fewer
(on average 20 per program) warnings.

Two of the authors manually inspected a random sample of
10 null-pointer warnings from 10 of the 41 test programs when
used with and without the call-graph pruner. The 10 programs were
chosen with the criteria that they had at least 10 warnings both with
and without the call-graph pruner, and the ratio of warnings with
and without the call-graph pruner was close to (20/223). Figure 10
gives the total warning counts as well as the true-positive counts
(from a sample of 10 warnings) for each of these 10 programs. The
use of a call-graph pruner helped the null-pointer analysis improve
its precision from 27% to 77%

The criteria for marking a warning as a true-positive was that
the author could trace the backward slice of a dereference to an
instance field which was uninitialized by the end of a constructor.
Warnings that either could not be verified in 10 minutes, ran into
another exception before triggering the null exception, or other-
wise unverifiable by the authors, were considered as false-positives.
Reachability from the main method was not considered because it
is hard to verify manually.

5.4 Threats to Validity
The first threat is the use of a dynamic analysis as a proxy for
the call-graph ground truth. It assumes good coverage of the true
ground-truth call-graph, and affects the precision-recall calcula-
tions. Improving dynamic analysis coverage is a non-trivial and
orthogonal problem and any techniques improving coverage will
automatically improve our technique and evaluation. Symbolic ex-
ecution [23] is one option to improve coverage, but it doesn’t scale
to the size of our programs. Instead, we use a subset of the NJR-1

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Striking a Balance:
Pruning False-Positives from Static Call Graphs ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

benchmark set which gets good coverage. Note that this threat does
not affect the evaluation of the null-pointer analysis.

The second threat is the manual inspection of the null-pointer
warnings, which are vulnerable to human errors. The authors in-
specting the errors have a limited familiarity with the code-bases
of the examined program. This could lead to misclassification of
both true and false errors, and affect the precision score accord-
ingly. Further, the precision scores are reported for a sample of 10
programs.

The third threat to validity is the generalizability of the results
to programs outside the NJR dataset. Our assumption is that our
learning and evaluation results generalize to other programs outside
the dataset.

6 RELATEDWORK
Our technique is the first to apply machine learning to boost call-
graph precision. In our discussion of related work, we focus on three
areas: combining static and dynamic analyses, applying machine
learning to remove static-analysis false-positives, and improving
the precision of call-graph construction.

Combining static and dynamic analysis. Prior research has used
a dynamic analysis to improve the precision of a static analysis.
Grech et. al [13] generate dynamic heap information and use this
as a drop-in replacement for the heap modeling part in an existing
static analysis tool to improve its precision. Artzi et. al [4] use a
dynamic analysis to confirm the mutability information computed
by a static analysis. Chen et. al [10] use the information from test-
executions to prioritize the alarms given by a static analysis. The
main drawback that these tools face is that they need the dynamic
analysis to be run every single time the tool is run. In contrast, our
technique needs the dynamic analysis only for generating a call-
graph pruner. After that, a call-graph pruner is purely a static tool,
and hence does not suffer from the usual drawbacks of a dynamic
analysis like long execution times or finding good inputs.

Applying machine learning to improve static-analysis by remov-
ing false-positives. The technique of filtering static-analysis false-
positives by casting it to a classification problem with hand-picked
features has been used for static bug-analysis tools [12, 15, 34, 38,
42]. Each of these works follows the same workflow: collect static
analysis error-reports, get a programmer to label them as true or
false-positives, design a feature-set for the error reports, and then
train a classifier on these labeled error-reports to identify false-
positives. However, they have minor differences among themselves
in terms of the feature-set chosen, the bug-reporting tool used and
the benchmarks used for the training data. Ruthruff et. al [34] use
the FindBugs [17] bug-reporting tool and the set of Java programs
at Google as their dataset. Heckman and Williams [15] also use
FindBugs reported bugs on 2 open-source Java projects. Yuksel
and Sozer [42] classify bug-alerts for a digital TV software. Flynn
et al. [12] combine the bug-alerts from multiple tools, in addition
to using the hand-picked features. Tripp et. al [38] work with a
JavaScript security checker’s warnings from popular Web sites as
its dataset.

Our work differs in three ways: it uses an estimate of ground-
truth produced by dynamic analysis, it has a generalizable approach

to picking a feature set, and it has a tunable precision-recall trade-
off, as we discuss next.

The key bottleneck faced by each of these prior works was that
they relied on the collection of human-labeled ground-truth, which
does not scale. This restricted their dataset to a handful of projects
and a couple of thousand data-points (bug reports) at best. In fact,
for each type of error, there is typically less than a few hundred bugs
in each of the datasets. In contrast, our technique uses an estimate
of ground-truth produced by dynamic analysis, which allows it to
scale to a much larger number of programs with a million data
points (call-graph edges).

The second major difference is in the choice of the feature-set.
This is partly a consequence of the fact that the previous work
focuses on static-analysis error report data, which is different from
the graph output generated by call-graph construction tools. Hence
some of the common features used in these works are the bug-
priority level, file-modification-frequency, coding-style metrics,
and lexical features (like method or package names). These fea-
tures, though appropriate, violate generalizability and black-box
guiding principles listed in Section 3.3. Non-black-box features like
bug-priority level will not generalize across different tools or al-
gorithms, and non-generalizable features like lexical features are
unlikely to generalize to programs outside the dataset. In contrast,
we use a systematic approach to selecting features, as described in
Section 3.3, and as a consequence, our approach generalizes eas-
ily across multiple programs and multiple call-graph construction
tools.

The third difference is that these prior works, except for [38],
provide a single precision-recall point. [38] provide eight differ-
ent precision-recall points, by varying the classifier used. Instead,
our approach has a tunable precision-recall trade-off by predict-
ing edge-probabilities and pruning edges with probability lower
than a threshold. Further, we only use a single classifier (Random
Forests) since it achieves superior precision-recall trade-offs than
the classifiers used in [38].

Another area that uses machine learning for filtering false pos-
itive is the work by Raghothaman et al. [32]. They predict the
probabilities of static-analysis alarms using Bayesian inference and
update these as the user resolves alarms as true or false positives.
This paradigm of online learning, where the model is learned and
improved as the user gives feedback, is quite different from our
fully-automated offline learning paradigm, where we do a one-time
training on a large dataset of static and dynamic analysis outputs
and require no user input.

Improving the precision of call-graph construction. Lhotak [25]
designed an interactive tool to qualitatively understand the root
cause of differences between different static and dynamic analysis
tools. This is then used in a case study to understand the main
cause of imprecision in a static analysis tool as compared to its
corresponding dynamic analysis output. In contrast, our classifier
generator is fully automated, using machine learning, and doesn’t
require a skilled programmer to use an interactive tool to figure
out the cause of the imprecision.

Sawin and Rountev [36] propose certain heuristics to deal with
dynamic features like reflection, dynamic class loading and native
method-calls in Java, which helps to improve call-graph precision

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

of the CHA algorithm without sacrificing much recall. Similarly,
a call-graph pruner trades of a little recall for a large boost in
precision, but it achieves this through automated machine learning
on a dataset of call-graphs instead, and is able to boost precision
by a much larger amount. Additionally, we work with a 0-CFA
baseline (with no handling of dynamic features like reflection),
which already has a large precision gain over a CHA algorithm
with reflection handling.

Zhang and Ryder [43] create precise application-only call-graphs
by identifying which edges from the standard library to the applica-
tion are really false-positive. This is similar to the precision boost
we gain for the edges that go via the standard library. However,
we generate a classifier that learns this on its own from data, and
we use the classifier in a call-graph pruner that is able to boost
precision even further.

There has also been prior work that uses a dynamic analysis to
evaluate call-graph related static analysis tools [1, 9, 33, 37]. Our
tool, in addition, also uses the dynamic analysis results as training
labels to prune the result from a static call-graph construction tool.

7 CONCLUSION
Our approach to generating a high-precision call-graph first runs
an existing black-box call-graph constructor and then prunes the
resulting call graph. A call-graph pruner uses a classifier, which is
trained on a large number of static and dynamic call-graphs, to pre-
dict the probability of an edge being a true-positive. Using different
thresholds for the edge probabilities we can tune the precision-
recall trade-off of the call-graph. We empirically showed how a
call-graph pruner can be used to boost precision and balance the
recall and precision of call-graphs produced by WALA, Doop and
Petablox, which are otherwise skewed towards high recall and low
precision. We also ran a null-pointer analysis and a monomorphic
call-sites analysis with these pruned call-graphs, and we showed
that they got much closer to the high-precision expectations of
their users.

Future work includes automatically learning a feature-set for use
by our pruner generator and our generated call-graph pruners. A
particularly promising avenue for future work is to explore graph
neural networks for automatic feature-learning. Recent work has
used graph neural networks [14] for program analysis tasks like
program similarity [29], variable misuse prediction [2, 41] variable
name prediction [2], and method name prediction [41]. The features
that are discovered in those papers are not features of call graphs
and hence this remains an open problem.

APPENDIX
The example in Figure 2 is an excerpt of from the program that
Figure 11 shows in full.

Our classifier generator uses the Random Forest algorithm [16]
implemented with the Scikit-Learn [31] library (v0.21.3). We tuned
the hyper-parameters using Random Hyper-Parameter Search [5].
The score for which we optimized was the area under the precision-
recall curve and Figure 12 lists the chosen hyper-parameters.

class A{
A f;
void foo(A a){

a.toString();
}

}

class B extends A{
A f;
void foo(A a){

a.toString();
}

}

class C extends B{
void foo(A c){

c.toString();
}

}

public class Main{
static A id(A a){

new A().foo(a);
return a;

}
static A getObjC(){

new A().foo(new A());
new B().foo(new A());
A p = id(new A());
A q = id(new B());
A r = id(new C());
return r;

}
public static void main(

String[] args){
A x = getObjC();
x.foo(x.f);
x.f = new A();

}
}

Figure 11: Program for the example in Section 2

Hyperparameter Value
Number of Trees 1000
Maximum Depth 10
Bootstrapping False
Minimum samples for split 2
Maximum features for split sqrt(feature count)
Minimum samples for leaf 1
Split quality criterion Entropy
Other hyper-parameters Library default

Figure 12: Hyper-parameters for Random-Forests

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Striking a Balance:
Pruning False-Positives from Static Call Graphs ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Karim Ali and Ondřej Lhoták. 2012. Application-Only Call Graph Construction.

In ECOOP 2012 – Object-Oriented Programming, James Noble (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 688–712.

[2] Miltiadis Allamanis, Marc Brockschmidt, andMahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

[3] Anonymous. 2021. Artifact for ICSE-22 submission "Striking a Balance: Pruning
False-Positives from Static Call Graphs". https://doi.org/10.5281/zenodo.5391007

[4] Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. 2007. Combined
Static and Dynamic Mutability Analysis. In Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering (Atlanta,
Georgia, USA) (ASE ’07). Association for Computing Machinery, New York, NY,
USA, 104–113. https://doi.org/10.1145/1321631.1321649

[5] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13, 1 (Feb. 2012), 281–305. http://dl.acm.org/
citation.cfm?id=2503308.2188395

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[7] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Spec-
ification of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (Orlando, Florida, USA) (OOPSLA ’09). ACM, New York, NY, USA,
243–262. https://doi.org/10.1145/1640089.1640108

[8] Leo Breiman. 1996. Bagging predictors. Machine Learning 24, 2 (01 Aug 1996),
123–140. https://doi.org/10.1007/BF00058655

[9] Raymond P. L. Buse and Westley Weimer. 2009. The Road Not Taken: Estimating
Path Execution Frequency Statically. In Proceedings of the 31st International
Conference on Software Engineering (ICSE ’09). IEEE Computer Society, USA,
144–154. https://doi.org/10.1109/ICSE.2009.5070516

[10] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting Static
Analysis Accuracy with Instrumented Test Executions. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1154–1165. https:
//doi.org/10.1145/3468264.3468626

[11] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332–343. https://doi.org/10.1145/2970276.2970347

[12] Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin,
Jennifer Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-Santurio.
2018. Prioritizing Alerts fromMultiple Static Analysis Tools, Using Classification
Models. In Proceedings of the 1st International Workshop on Software Qualities
and Their Dependencies (Gothenburg, Sweden) (SQUADE ’18). Association for
Computing Machinery, New York, NY, USA, 13–20. https://doi.org/10.1145/
3194095.3194100

[13] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smarag-
dakis. 2018. Shooting from the Heap: Ultra-Scalable Static Analysis with
Heap Snapshots. In Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 198–208.
https://doi.org/10.1145/3213846.3213860

[14] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 855–864. https:
//doi.org/10.1145/2939672.2939754

[15] Sarah Heckman and Laurie Williams. 2009. A Model Building Process for Identi-
fying Actionable Static Analysis Alerts. In Proceedings of the 2009 International
Conference on Software Testing Verification and Validation (ICST ’09). IEEE Com-
puter Society, USA, 161–170. https://doi.org/10.1109/ICST.2009.45

[16] Tin Kam Ho. 1995. Random Decision Forests. In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume 1
(ICDAR ’95). IEEE Computer Society, USA, 278.

[17] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.
39, 12 (Dec. 2004), 92–106. https://doi.org/10.1145/1052883.1052895

[18] Laurent Hubert, Thomas Jensen, and David Pichardie. 2008. Semantic Founda-
tions and Inference of Non-null Annotations. In Formal Methods for Open Object-
Based Distributed Systems, Gilles Barthe and Frank S. de Boer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 132–149.

[19] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. 2000. A Study of Devirtualization Techniques for a Java Just-In-
Time Compiler. In Proceedings of the 15th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (Minneapolis, Min-
nesota, USA) (OOPSLA ’00). Association for Computing Machinery, New York,
NY, USA, 294–310. https://doi.org/10.1145/353171.353191

[20] Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning Graph-Based
Heuristics for Pointer Analysis without Handcrafting Application-Specific Fea-
tures. Proc. ACM Program. Lang. 4, OOPSLA, Article 179 (Nov. 2020), 30 pages.
https://doi.org/10.1145/3428247

[21] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering (San
Francisco, CA, USA) (ICSE ’13). IEEE Press, 672–681.

[22] Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 146 (Oct. 2018), 29 pages. https:
//doi.org/10.1145/3276516

[23] Sarfraz Khurshid, Corina S. PĂsĂreanu, and Willem Visser. 2003. Generalized
Symbolic Execution for Model Checking and Testing. In Tools and Algorithms
for the Construction and Analysis of Systems, Hubert Garavel and John Hatcliff
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 553–568.

[24] S. B. Kotsiantis. 2007. Supervised Machine Learning: A Review of Classifica-
tion Techniques. In Proceedings of the 2007 Conference on Emerging Artificial
Intelligence Applications in Computer Engineering. IOS Press, NLD, 3–24.

[25] Ondrej Lhoták. 2007. Comparing Call Graphs. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (San Diego, California, USA) (PASTE ’07). Association for Computing
Machinery, New York, NY, USA, 37–42. https://doi.org/10.1145/1251535.1251542

[26] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-
First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL,
USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 129–140. https://doi.org/10.1145/3236024.3236041

[27] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58, 2 (Jan. 2015), 44–46. https://doi.org/10.1145/2644805

[28] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-Guided
Approach to Program Analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 462–473. https://doi.org/10.
1145/2786805.2786851

[29] Aravind Nair, Avijit Roy, and Karl Meinke. 2020. FuncGNN: A Graph Neural
Network Approach to Program Similarity. In Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM) (Bari, Italy) (ESEM ’20). Association for Computing Machinery, New York,
NY, USA, Article 10, 11 pages. https://doi.org/10.1145/3382494.3410675

[30] Jens Palsberg and Cristina V. Lopes. 2018. NJR: A Normalized Java Resource.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amsterdam,
Netherlands) (ISSTA ’18). Association for Computing Machinery, New York, NY,
USA, 100–106. https://doi.org/10.1145/3236454.3236501

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python . Journal of Machine Learning Research 12 (2011), 2825–2830.

[32] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018.
User-Guided Program Reasoning Using Bayesian Inference. SIGPLAN Not. 53, 4
(June 2018), 722–735. https://doi.org/10.1145/3296979.3192417

[33] Atanas Rountev, Scott Kagan, and Michael Gibas. 2004. Static and Dynamic
Analysis of Call Chains in Java. In Proceedings of the 2004 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Boston, Massachusetts, USA)
(ISSTA ’04). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/1007512.1007514

[34] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. 2008. Predicting Accurate and Actionable Static Analysis
Warnings: An Experimental Approach. In Proceedings of the 30th International
Conference on Software Engineering (Leipzig, Germany) (ICSE ’08). Association
for Computing Machinery, New York, NY, USA, 341–350. https://doi.org/10.
1145/1368088.1368135

[35] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[36] J. Sawin and A. Rountev. 2011. Assumption Hierarchy for a CHA Call Graph
Construction Algorithm. In 2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation. 35–44.

11

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.5281/zenodo.5391007
https://doi.org/10.1145/1321631.1321649
http://dl.acm.org/citation.cfm?id=2503308.2188395
http://dl.acm.org/citation.cfm?id=2503308.2188395
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICSE.2009.5070516
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/3468264.3468626
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3194095.3194100
https://doi.org/10.1145/3194095.3194100
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/353171.353191
https://doi.org/10.1145/3428247
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3276516
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/3382494.3410675
https://doi.org/10.1145/3236454.3236501
https://doi.org/10.1145/3296979.3192417
https://doi.org/10.1145/1007512.1007514
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/3188720

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[37] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the Recall of
Static Call Graph Construction in Practice (ICSE ’20). Association for Computing
Machinery, New York, NY, USA, 1049–1060. https://doi.org/10.1145/3377811.
3380441

[38] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New
York, NY, USA, 762–774. https://doi.org/10.1145/2660267.2660339

[39] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg. 2020.
NJR-1 Dataset. https://doi.org/10.5281/zenodo.4839913

[40] WALA. 2015. IBM, “T.J. Watson Libraries for Analysis (WALA),”. http://wala.
sourceforge.net.

[41] YuWang, KeWang, Fengjuan Gao, and LinzhangWang. 2020. Learning Semantic
Program Embeddings with Graph Interval Neural Network. Proc. ACM Program.
Lang. 4, OOPSLA, Article 137 (Nov. 2020), 27 pages. https://doi.org/10.1145/
3428205

[42] U. Yüksel and H. Sözer. 2013. Automated Classification of Static Code Anal-
ysis Alerts: A Case Study. In 2013 IEEE International Conference on Software
Maintenance. 532–535.

[43] Weilei Zhang and Barbara G. Ryder. 2007. Automatic Construction of Accurate
Application Call Graph with Library Call Abstraction for Java: Research Articles.
J. Softw. Maint. Evol. 19, 4 (July 2007), 231–252.

12

https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.5281/zenodo.4839913
http://wala.sourceforge.net
http://wala.sourceforge.net
https://doi.org/10.1145/3428205
https://doi.org/10.1145/3428205

	Abstract
	1 Introduction
	2 Example
	3 Call-Graph Pruners
	3.1 Overview
	3.2 Our Classifier Generator
	3.3 Our Feature set

	4 Implementation and Dataset
	5 Experimental Results
	5.1 Main Result
	5.2 Precision and Recall for individual programs
	5.3 Effect on Client Analyses
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

