There is a newer version of the record available.

Published July 11, 2021 | Version v1
Dataset Open

Extended data: Tissue-specific multi-omics analysis of atrial fibrillation

  • 1. Computational Health Center, Helmholtz-Zentrum München, München, Germany;
  • 2. University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
  • 3. Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany

Description

Summary statistics and result repository for the publication Tissue-specific multi-omics analysis of atrial fibrillation:

Assum, I., Krause, J., Scheinhardt, M.O. et al. Tissue-specific multi-omics analysis of atrial fibrillation. Nat Commun 13, 441 (2022). https://doi.org/10.1038/s41467-022-27953-1

For the related source code, see https://doi.org/https://doi.org/10.5281/zenodo.5094276 or https://github.com/heiniglab/symatrial.

Additional information, such as a reference for effect alleles has been added in a newer version of this repository. Please refer to https://doi.org/10.5281/zenodo.5080228 for the newest version.

Ines Assum1,2,†, Julia Krause3,4,†, Markus O. Scheinhardt5, Christian Müller3,4, Elke Hammer6,7, Christin S. Börschel4,8, Uwe Vöker6,7, Lenard Conradi9, Bastiaan Geelhoed4,8,10, Tanja Zeller3,4,*, Renate B. Schnabel4,8,*, Matthias Heinig1,2,11,*

,* These authors contributed equally.

 1 Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
 2 Department of Informatics, Technical University Munich, München, Germany.
 3 University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany.
 4 Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany.
 5 Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany.
 6 Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
 7 Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany.
 8 Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany.
 9 Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany.
10 Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
11Partner site Munich, DZHK (German Center for Cardiovascular Research), Munich, Germany.

 

ABSTRACT:

Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted transQTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.

 

TABLE OF CONTENTS:

  • Single-omic cis-QTL results
    • cis-eQTLs (all pairs, incl. LD clump info)
      eQTL_right_atrial_appendage_allpairs_clump.txt
    • cis-pQTLs (all pairs, incl. LD clump info)
      pQTL_right_atrial_appendage_allpairs_clump.txt
    • cis-res eQTLs (all pairs, incl. LD clump info)
      res_eQTL_right_atrial_appendage_allpairs_clump.txt
    • cis-res pQTLs (all pairs, incl. LD clump info)
      res_pQTL_right_atrial_appendage_allpairs_clump.txt
    • cis-ratioQTLs (all pairs, incl. LD clump info)
      ratioQTL_right_atrial_appendage_allpairs_clump.txt
  • Functional cis-QTL categories and eQTL/pQTL overlap:
    • All eQTLs, pQTLs, res eQTLs, res pQTLs and ratioQTLs for all SNP-gene pairs with a significant eQTL and pQTL (FDR<0.05)
      Fig2a_source_data_Shared_eQTL_pQTL_clump.txt
    • All eQTLs, pQTLs, res eQTLs, res pQTLs and ratioQTLs for all SNP-gene pairs with a significant eQTL but no pQTL (FDR<0.05)
      Fig2b_source_data_Independent_eQTL_clump.txt
    • All eQTLs, pQTLs, res eQTLs, res pQTLs and ratioQTLs for all SNP-gene pairs with no eQTL but a significant pQTL (FDR<0.05)
      Fig2c_source_data_Independent_pQTL_clump.txt
    QTS rankings and enrichment results
    • eQTS rankings and enrichments
      TableS6_source_data_eQTS_ranking.txt
      TableS7_source_data_eQTS_GSEA_results.txt
    • pQTS rankings and enrichments
      TableS8_source_data_pQTS_ranking.txt
      TableS9_source_data_pQTS_GSEA_results.txt
  • Trans-QTLs
    all tested pairs including trans-pQTLs for trans-eQTLs and trans-eQTLs for trans-pQTLs
    Table2_source_data_Trans-QTL_results.txt

 

Files

eQTL_right_atrial_appendage_allpairs_clump.txt

Files (13.8 GB)

Name Size Download all
md5:3d4d22df0db19007e3e9c34fc6b9d775
10.5 GB Preview Download
md5:1d49c2f3df8df7ae3879dc97d0fb49e3
342.1 kB Preview Download
md5:4eec59192a1385bc2019520217c4b14b
2.1 MB Preview Download
md5:90298b4e9b5b7a85859207c3b5f2d082
1.7 MB Preview Download
md5:96d7177ede2604eaa9c869b771d07244
6.1 MB Preview Download
md5:b9ee8e1eaa1505d70da5098fbce4dc3c
50.8 MB Preview Download
md5:eb5300fc4ddfa74dfed50f569239f96c
63.8 kB Preview Download
md5:e1ec64e71d9436e89d6b7457f731131b
6.7 kB Preview Download
md5:7182f71ccd2ce933846f412412d6a321
841.4 MB Preview Download
md5:77fc5e280a36136cec1d854fbb2cf6c1
782.9 MB Preview Download
md5:031412cb2745bb698b8dc678d3c76f1e
783.2 MB Preview Download
md5:2e2ade10dfd491a4eb4c1c6ae74ce80d
783.3 MB Preview Download
md5:582bbe6e5f9a7c20c81ec057ba72bdfe
3.8 MB Preview Download
md5:07329a194283f5edc5c3e8318349ce04
1.8 MB Preview Download
md5:13718b298c0c7a2c8a491c9ea5f0d756
1.0 MB Preview Download
md5:3feff5f1411b2fad8e97bb673b379037
99.9 kB Preview Download
md5:e47281c1c306fc0b648cce940c3bff82
435.2 kB Preview Download

Additional details

Related works

Is derived from
Software documentation: https://github.com/heiniglab/symatrial (URL)
Software documentation: 10.5281/zenodo.5094276 (DOI)
Is supplement to
Journal article: 10.1038/s41467-022-27953-1 (DOI)