Long-term evolution of ocean eddy activity in a warming world
- 1. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- 2. European Centre for Medium-Range Weather Forecasts, Bonn, Germany
- 3. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Mathematics and Logistics, Jacobs University, Bremen, Germany
- 4. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Department of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
Description
Abstract
Mesoscale ocean eddies, an important element of the climate system, impact ocean circulation, heat uptake, gas exchange, carbon sequestration and nutrient transport. Much of what is known about ongoing changes in ocean eddy activity is based on satellite altimetry; however, the length of the altimetry record is limited, making it difficult to distinguish anthropogenic change from natural variability. Using a climate model that exploits a variable-resolution unstructured mesh in the ocean component to enhance grid resolution in eddy-rich regions, we investigate the long-term response of ocean eddy activity to anthropogenic climate change. Eddy kinetic energy is projected to shift poleward in most eddy-rich regions, to intensify in the Kuroshio Current, Brazil and Malvinas currents and Antarctic Circumpolar Current and to decrease in the Gulf Stream. Modelled changes are linked to elements of the broader climate including Atlantic meridional overturning circulation decline, intensifying Agulhas leakage and shifting Southern Hemisphere westerlies.
Data Availability
Geostrophic velocity anomalies derived from satellite altimetry anomalies are publicly available at https://doi.org/10.48670/moi-00148. Model output from AWI-CM-1-1-MR in the CMIP6 framework, including ocean velocity and surface wind is publicly available at https://doi.org/10.22033/ESGF/CMIP6.359 (ref. 35). Daily sea surface height data used in this study is archived at the World Data Center for Climate at the DKRZ.
Code Availability
The code used to calculate geostrophic velocities and eddy kinetic energy according to the methods described in this paper and to produce the main analysis figures is available on Github GitHub - n-beech/awicm-cmip6-eke at v1.1 or can alternatively also be accessed via n-beech/awicm-cmip6-eke: 09-09-22 | Zenodo
------------------------------
Acknowledgements
The work described in this paper has received funding from the Helmholtz Association through the project 'Advanced Earth System Model Capacity' (project leader: T.J., support code: ZT-0003) in the frame of the initiative 'Zukunftsthemen'. The content of the paper is the sole responsibility of the authors and it does not represent the opinion of the Helmholtz Association, and the Helmholtz Association is not responsible for any use that might be made of information contained. This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project ID 995. The CMIP data used in this study were replicated and made available by the DKRZ. This work was supported by the European Union's Horizon 2020 collaborative project NextGEMS (grant number 101003470). This work was supported by the Helmholtz Climate Initiative REKLIM (Regional Climate Change) and the EPICA project in the research theme 'MARE:N—Polarforschung/MOSAiC' funded by the German Federal Ministry for Education and Research with funding number 03F0889A.
Files
s41558-022-01478-3-1.pdf
Files
(11.8 MB)
Name | Size | Download all |
---|---|---|
md5:7d5df5523aae546a3e6d9c48bf1bf5ed
|
11.8 MB | Preview Download |
Additional details
References
- Cheney, R. E., Marsh, J. G. & Beckley, B. D. Global mesoscale variability from collinear tracks of SEASAT altimeter data. J. Geophys. Res.: Oceans 88, 4343–4354 (1983).
- Menard, Y. Observations of eddy fields in the northwest Atlantic and northwest Pacific by SEASAT altimeter data. J. Geophys. Res. 88, 1853–1866 (1983).
- Heywood, K. J., McDonagh, E. L. & White, M. A. Eddy kinetic energy of the North Atlantic subpolar gyre from satellite altimetry. J. Geophys. Res.: Oceans 99, 22525–22539 (1994).
- Lagerloef, G. S., Mitchum, G. T., Lukas, R. B. & Niiler, P. P. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res.: Oceans 104, 23313–23326 (1999).
- Chelton, D. B., Schlax, M. G. & Samelson, R. M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216 (2011).
- Gill, A. E., Green, J. S. A. & Simmons, A. J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Res. Oceanogr. Abstr. 21, 499–528 (1974).
- Ogata, T. & Masumoto, Y. Interannual modulation and its dynamics of the mesoscale eddy variability in the southeastern tropical Indian Ocean. J. Geophys. Res.: Oceans https://doi.org/ 10.1029/2010JC006490 (2011).
- Constantinou, N. C. & Hogg, A. M. Eddy saturation of the Southern Ocean: a baroclinic versus barotropic perspective. Geophys. Res. Lett. 46, 12202–12212 (2019).
- Endoh, T. & Hibiya, T. Numerical simulation of the transient response of the Kuroshio leading to the large meander formation south of Japan. J. Geophys. Res.: Oceans 106, 26833–26850 (2001).
- Hogg, A. M. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res.: Oceans 120, 257–267 (2015).
- Lachkar, Z., Orr, J. C., Dutay, J. & Delecluse, P. On the role of mesoscale eddies in the ventilation of Antarctic intermediate water. Deep Sea Res. Part I 56, 909–925 (2009).
- MacGilchrist, G. A., Marshall, D. P., Johnson, H. L., Lique, C. & Thomas, M. Characterizing the chaotic nature of ocean ventilation. J. Geophys. Res.: Oceans 122, 7577–7594 (2017).
- Wang, Y., Claus, M., Greatbatch, R. J. & Sheng, J. Decomposition of the mean barotropic transport in a high-resolution model of the North Atlantic Ocean. Geophys. Res. Lett. 44, 537–546 (2017).
- Sallée, J.-B., Matear, R. J., Rintoul, S. R. & Lenton, A. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).
- Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale eddy activity and transport in the Atlantic water inflow region north of Svalbard. J. Geophys. Res.: Oceans 123, 201–215 (2018).
- Falkowski, P., Ziemann, D., Kolber, Z. & Bienfang, P. K. Role of eddy pumping in enhancing primary production in the ocean. Nature 352, 55–58 (1991).
- Oschlies, A. & Garçon, V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394, 266–269 (1998).
- Ding, M., Lin, P., Liu, H., & Chai, F. Increased eddy activity in the northeastern Pacific during 1993–2011. J. Climate https://doi. org/10.1175/JCLI-D-17-0309.1 (2017).
- Martinez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C. & Morrison, A. K. Kinetic energy of eddy‐like features from sea surface altimetry. J. Adv. Modeling Earth Syst. 11, 3090–3105 (2019).
- Martinez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).
- Martinez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).
- Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
- Hewitt, H. T. et al. Resolving and parameterising the ocean mesoscale in Earth system models. Curr. Clim. Change Rep. 6, 137–152 (2020).
- Moreton, S. M., Ferreira, D., Roberts, M. J. & Hewitt, H. T. Evaluating surface eddy properties in coupled climate simulations with 'eddy-present' and 'eddy-rich' ocean resolution. Ocean Modell. 147, 101567 (2020).
- Penduf, T. et al. Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Clim. 24, 5652–5670 (2011).
- Patara, L., Böning, C. W. & Biastoch, A. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett. 43, 4517–4523 (2016).
- Regan, H., Lique, C., Talandier, C. & Meneghello, G. Response of total and eddy kinetic energy to the recent spinup of the Beaufort Gyre. J. Phys. Oceanogr. 50, 575–594 (2020).
- Wang, Q. et al. Eddy kinetic energy in the Arctic Ocean from a global simulation with a 1‐km Arctic. Geophys. Res. Lett. https://doi.org/10.1029/2020GL088550 (2020).
- Grist, J. P. et al. Future evolution of an eddy rich ocean associated with enhanced East Atlantic storminess in a coupled model projection. Geophys. Res. Lett. 48, e2021GL092719 (2021).
- Danilov, S., Kivman, G. & Schröter, J. A finite‐element ocean model: principles and evaluation. Ocean Modell. 6, 125–150 (2004).
- Wang, Q. et al. The Finite Element Sea ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014).
- Sein, D. V. et al. Designing variable ocean model resolution based on the observed ocean variability. J. Adv. Model. Earth Syst. 8, 904–916 (2016).
- Sein, D. V. et al. Ocean modeling on a mesh with resolution following the local Rossby radius. J. Adv. Model. Earth Syst. 9, 2601–2614 (2017).
- Koldunov, N. V. et al. Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2). Geosci. Model Dev. 12, 3991–4012 (2019).
- Semmler, T. et al. AWI AWI‐CM 1.1 MR model output prepared for CMIP6 CMIP, version 2019–1219. Earth System Grid Federation https://doi.org/10.22033/ESGF/CMIP6.359 (2018).
- Semmler, T. et al. Simulations for CMIP6 With the AWI Climate Model AWI-CM-1-1. J. Adv. Model. Earth Syst. 12, e2019MS002009 (2020).
- Wang, C., Zhang, L., Lee, S. K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).
- Drews, A., Greatbatch, R. J., Ding, H., Latif, M. & Park, F. The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn. 65, 1079–1093 (2015).
- Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res.: Oceans 121, 4928–4945 (2016).
- Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).
- Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
- Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. https://doi.org/10.1002/ 2016GL070457 (2016).
- Weijer, W., Cheng, W., Garuba, O. A., Hu, A., & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. https://doi.org/10.1029/2019GL086075 (2020).
- Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).
- Wu, B., Lin, X. & Yu, L. Poleward shift of the Kuroshio Extension front and its impact on the North Pacific subtropical mode water in the recent decades. J. Phys. Oceanogr. 51, 457–474 (2021).
- White, W. & Mccreary, J. On the formation of the Kuroshio meander and its relationship to the large-scale ocean circulation. Deep Sea Res. Oceanogr. Abstr. 23, 33–47 (1976).
- Zhang, X., Wang, Q. & Mu, M. The impact of global warming on Kuroshio Extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h. Theor. Appl. Climatol. 127, 815–827 (2015).
- Chen, C., Wang, G., Xie, S. & Liu, W. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 32, 7437–7451 (2019).
- Zhang, Y., Zhang, Z., Chen, D., Qiu, B. & Wang, W. Strengthening of the Kuroshio Current by intensifying tropical cyclones. Science 368, 988–993 (2020).
- Kawabe, M. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr. 25, 3103–3117 (1995).
- Olson, D. B. & Evans, R. H. Rings of the Agulhas Current. Deep Sea Res. Part A , 33, 27–42 (1986).
- Lutjeharms, J. R. E. & Van Ballegooyen, R. C. The retroflection of the Agulhas Current. J. Phys. Oceanogr. 18, 1570–1583 (1988).
- Biastoch, A., Böning, C., Schwarzkopf, F. & Lutjeharms, J. Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462, 495–498 (2009).
- Rouault, M., Penven, P. & Pohl, B. Warming in the Agulhas Current system since the 1980s. Geophys. Res. Lett. https://doi. org/10.1029/2009GL037987 (2009).
- Backeberg, B., Penven, P. & Rouault, M. Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nat. Clim. Change 2, 608–612 (2012).
- Biastoch, A. & Böning, C. W. Anthropogenic impact on Agulhas leakage. Geophys. Res. Lett. 40, 1138–1143 (2013).
- Peeters, F. et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004).
- Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037 (1986).
- Weijer, W., de Ruijter, W. P. M., Dijkstra, H. A. & van Leeuwen, P. J. Impact of interbasin exchange on the Atlantic overturning circulation. J. Phys. Oceanogr. 29, 2266–2284 (1999).
- Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003).
- Biastoch, A., Böning, C. & Lutjeharms, J. Agulhas leakage dynamics afects decadal variability in Atlantic overturning circulation. Nature 456, 489–492 (2008).
- Van Sebille, E. V., Biastoch, A., Leeuwen, P. J. & Ruijter, W. P. A weaker Agulhas Current leads to more Agulhas leakage. Geophys. Res. Lett. https://doi.org/10.1029/2008GL036614 (2009).
- Cai, W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024911 (2006).
- Bard, E. & Rickaby, R. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–383 (2009).
- Goni, G. J., Bringas, F. & DiNezio, P. N. Observed low frequency variability of the Brazil Current front. J. Geophys. Res. 116, C10037 (2011).
- Lumpkin, R. & Garzoli, S. Interannual to decadal changes in the western South Atlantics surface circulation. J. Geophys. Res. https://doi.org/10.1029/2010JC006285 (2011).
- Drouin, K. L., Lozier, M. S. & Johns, W. E. Variability and trends of the South Atlantic subtropical gyre. J. Geophys. Res.: Oceans https://doi.org/10.1029/2020JC016405 (2020).
- Combes, V. & Matano, R. P. Trends in the Brazil/Malvinas confluence region. Geophys. Res. Lett. 41, 8971–8977 (2014).
- de Souza, M. M., Mathis, M. & Pohlmann, T. Driving mechanisms of the variability and long-term trend of the Brazil– Malvinas confluence during the 21st century. Clim. Dyn. 53, 6453–6468 (2019).
- Chiessi, C. M. et al. Variability of the Brazil Current during the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415, 28–36 (2014).
- Meier, K. J. et al. Role of the tropical Atlantic for the interhemispheric heat transport during the last deglaciation. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2020PA0 04107 (2021).
- Arz, H. W., Pätzold, J. & Wefer, G. The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records of northeastern Brazil. Earth Planet. Sci. Lett. 167, 105–117 (1999).
- Zhu, C. & Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Change 10, 998–1003 (2020).
- Marshall, G. J. Trends in the Southern annular mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).
- Allison, L. C., Johnson, H. L., Marshall, D. P. & Munday, D. R. Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett. https://doi.org/10.1029/2010GL043355 (2010).
- Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507–532 (2013).
- Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy efects. Ocean Modell. 72, 92–103 (2013).
- Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).
- O'Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
- Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2017).
- IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
- Semmler, T. CMIP6_supplemental CMIP AWI AWI-CM-1-1-MR, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.26050/WDCC/C6sCMAWAWM (2022).
- Semmler, T. CMIP6_supplemental ScenarioMIP AWI AWI-CM-1- 1-MR, World Data Center for Climate (WDCC) at DKRZ, https://doi.org/10.26050/WDCC/C6sSPAWAWM (2022).
- Beech, N. n-beech/awicm-cmip6-eke: 09-09-22 (v1.1). Jupyter notebooks to calculate and analyze eddy kinetic energy in AWI-CM-1-1-MR's CMIP6 simulations, Zenodo, https://doi.org/10.5281/zenodo.7064462 (2022).