Laser-Induced Creation of Antiferromagnetic 180-Degree Domains in NiO/Pt Bilayers
Creators
- 1. Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
- 2. Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
- 3. Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química-Física, Universidade de Santiago de Compostela, Santiago de Compostela, 15782 Spain WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 Japan
- 4. ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallés, Barcelona, 08290 Spain
- 5. Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- 6. Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232 Switzerland
- 7. WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577 Japan Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656 Japan Center for Spintronics Research Network, Tohoku University, Sendai, 980-8577 Japan Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, 319-1195 Japan
- 8. Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany Graduate School of Excellence Materials Science in Mainz, 55099 Mainz, Germany
Description
The antiferromagnetic order in heterostructures of NiO/Pt thin films can be modified by optical pulses. After the irradiation with laser light, the optically induced creation of antiferromagnetic domains can be observed by imaging the created domain structure utilizing the X-ray magnetic linear dichroism effect. The effect of different laser polarizations on the domain formation can be studied and used to identify a polarization-independent creation of 180° domain walls and domains with 180° different Néel vector orientation. By varying the irradiation parameters, the switching mechanism can be determined to be thermally induced. This study demonstrates experimentally the possibility to optically create antiferromagnetic domains, an important step towards future functionalization of all optical switching mechanisms in antiferromagnets.
Files
Advanced functional materials.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:fa32b22667f3073b2dff8538668a886c
|
1.1 MB | Preview Download |