There is a newer version of the record available.

Published December 21, 2022 | Version v0.1
Dataset Open

ESSD benchmark output data

  • 1. Karlsruhe Institute of Technology
  • 2. GeoSphere Austria
  • 3. Royal Meteorological Institute of Belgium
  • 4. UK Met Office
  • 5. University of Ljubljana
  • 6. University of Hildesheim
  • 7. University of Ljubljana, Slovenian Environment Agency
  • 8. Bielefeld University
  • 9. Slovenian Environment Agency
  • 10. European Centre for Medium Range Weather Forecasts

Description

!!!------------------------------------------------------------------------------------------------------------------------------------!!!

Important communication Some station data of this version are corrupted. Do not use this version of the dataset but the new one: https://doi.org/10.5281/zenodo.7798350

!!!------------------------------------------------------------------------------------------------------------------------------------!!!

This dataset contains the ESSD benchmark output data. Visit https://github.com/EUPP-benchmark/ESSD-benchmark for more information.

This dataset is provided as supplementary material with:

  • Demaeyer, J., Bhend, J., Lerch, S., Primo, C., Van Schaeybroeck, B., Atencia, A., Ben Bouallègue, Z., Chen, J., Dabernig, M., Evans, G., Faganeli Pucer, J., Hooper, B., Horat, N., Jobst, D., Merše, J., Mlakar, P., Möller, A., Mestre, O., Taillardat, M., and Vannitsem, S.: The EUPPBench postprocessing benchmark dataset v1.0, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-465, in review, 2023.

Please cite this article if you use (a part of) this code for a publication.


Description of the methods used to get the ESSD benchmark output data
-------------------------------------------------------------------------------------------------------

 - ANET: NN post processing method using ensemble member encoders and dynamic attention
     Repository: https://github.com/EUPP-benchmark/ESSD-ANET
     
 - AR-EMOS: EMOS with heteroscedastic autoregressive error adjustments
     Repository: https://github.com/EUPP-benchmark/ESSD-AR-EMOS
     
 - ASRE: Accounting for systematic and representativeness errors
     Repository: https://github.com/EUPP-benchmark/ESSD-ASRE
     
 - DRN: Distributional regression network
     Repository: https://github.com/EUPP-benchmark/ESSD-DRN
     
 - DVQR: D-vine copula based postprocessing
     Repository: https://github.com/EUPP-benchmark/ESSD-D-Vine-Copula
     
 - EMOS: Ensemble model output statistics
     Repository: https://github.com/EUPP-benchmark/ESSD-EMOS
     
 - RC: Reliability Calibration (IMPROVER)
     Repository: https://github.com/EUPP-benchmark/ESSD-reliability-calibration
     
 - MBM: Member-By-Member postprocessing
     Repository: https://github.com/EUPP-benchmark/ESSD-mbm

Files

ESSD-benchmark-output-data-description.txt

Files (4.7 GB)

Name Size Download all
md5:b89cc45b2e36bb3f31dd49b872d16a7f
1.4 kB Preview Download
md5:22ffe48a7c54784a52e847400b30fc2a
4.7 GB Preview Download