This dataset contains the ESSD benchmark output data. Visit https://github.com/EUPP-benchmark/ESSD-benchmark for more information. This dataset is provided as supplementary material with: ...: The EUPPBench postprocessing benchmark dataset v1.0, ... Please cite this article if you use (a part of) this code for a publication. Description of the methods used to get the ESSD benchmark output data --------------------------------------------------------------------- - ANET: NN post processing method using ensemble member encoders and dynamic attention Repository: https://github.com/EUPP-benchmark/ESSD-ANET - AR-EMOS: EMOS with heteroscedastic autoregressive error adjustments Repository: https://github.com/EUPP-benchmark/ESSD-AR-EMOS - ASRE: Accounting for systematic and representativeness errors Repository: https://github.com/EUPP-benchmark/ESSD-ASRE - DRN: Distributional regression network Repository: https://github.com/EUPP-benchmark/ESSD-DRN - DVQR: D-vine copula based postprocessing Repository: https://github.com/EUPP-benchmark/ESSD-D-Vine-Copula - EMOS: Ensemble model output statistics Repository: https://github.com/EUPP-benchmark/ESSD-EMOS - RC: Reliability Calibration Repository: https://github.com/EUPP-benchmark/ESSD-reliability-calibration - MBM: Member-By-Member postprocessing Repository: https://github.com/EUPP-benchmark/ESSD-mbm