Published October 13, 2022 | Version v1
Dataset Open

COCO, LVIS, Open Images V4 classes mapping


This repository contains a mapping between the classes of COCO, LVIS, and Open Images V4 datasets into a unique set of 1460 classes.

COCO [Lin et al 2014] contains 80 classes, LVIS [gupta2019lvis] contains 1460 classes, Open Images V4 [Kuznetsova et al. 2020] contains 601 classes.

We built a mapping of these classes using a semi-automatic procedure in order to have a unique final list of 1460 classes. We also generated a hierarchy for each class, using wordnet

This repository contains the following files:

  • coco_classes_map.txt, contains the mapping for the 80 coco classes
  • lvis_classes_map.txt, contains the mapping for the 1460 coco classes
  • openimages_classes_map.txt, contains the mapping for the 601 coco classes
  • classname_hyperset_definition.csv, contains the final set of 1460 classes, their definition and hierarchy
  • all-classnames.xlsx, contains a side-by-side view of all classes considered

This mapping was used in VISIONE [Amato et al. 2021, Amato et al. 2022]  that is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). For the object detection VISIONE uses three pre-trained models: VfNet [Zhang et al. 2021] (trained on COCO dataset), Mask R-CNN [He et al. 2017] (trained on LVIS), and a Faster R-CNN+Inception ResNet  (trained on the Open Images V4).

This is repository is released under a Creative Commons Attribution license, please cite the following paper if you use it in your work in any form:

  title={The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval},
  author={Amato, Giuseppe and Bolettieri, Paolo and Carrara, Fabio and Debole, Franca and Falchi, Fabrizio and Gennaro, Claudio and Vadicamo, Lucia and Vairo, Claudio},
  journal={Journal of Imaging},
  publisher={Multidisciplinary Digital Publishing Institute}




[Amato et al. 2022] Amato, G. et al. (2022). VISIONE at Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham.

[Amato et al. 2021]  Amato, G., Bolettieri, P., Carrara, F., Debole, F., Falchi, F., Gennaro, C., Vadicamo, L. and Vairo, C., 2021. The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. Journal of Imaging7(5), p.76.

[Gupta et al.2019] Gupta, A., Dollar, P. and Girshick, R., 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5356-5364).

[He et al. 2017] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

[Kuznetsova et al. 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A. and Duerig, T., 2020. The open images dataset v4. International Journal of Computer Vision128(7), pp.1956-1981.

[Lin et al. 2014] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.

[Zhang et al. 2021] Zhang, H., Wang, Y., Dayoub, F. and Sunderhauf, N., 2021. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8514-8523).




Files (291.3 kB)

Name Size Download all
121.2 kB Download
127.8 kB Preview Download
1.4 kB Preview Download
28.8 kB Preview Download
12.2 kB Preview Download

Additional details

Related works

Is supplement to
Conference paper: 10.1007/978-3-030-98355-0_52 (DOI)
Journal article: 10.3390/jimaging7050076 (DOI)


AI4Media – A European Excellence Centre for Media, Society and Democracy 951911
European Commission