Published March 2, 2022 | Version v1
Dataset Open

Connectome of memristive nanowire networks through graph theory - Dataset

  • 1. Istituto Nazionale di Ricerca Metrologica (INRiM)
  • 2. Universitat Autònoma de Barcelona (UAB)
  • 3. Politecnico di Torino

Description

This is the dataset of "Connectome of memristive nanowire networks through graph theory"

Notes

Part of this work was supported by the European project MEMQuD, code 20FUN06, funder ID: 10.13039/100014132. This project (EMPIR 20FUN06 MEMQuD) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Files

Figure 2d - Degree of nodes distribution 300 NWs.txt

Files (245.0 kB)

Name Size Download all
md5:a93c59d60b774d551698feec41196dd3
320 Bytes Preview Download
md5:3b8d6c4c6fcda8f7af3c75502f4937e8
660 Bytes Preview Download
md5:9f453ccaffd5c057ac93167d89b45812
679 Bytes Preview Download
md5:51cb7fc09d1f82da698f222c24239a36
2.2 kB Preview Download
md5:69dac9d922213aa3687559b54fc66a09
51.0 kB Preview Download
md5:879783145515e4bb98f91b3c2d964dc1
706 Bytes Preview Download
md5:26152962f73c7dd9c1e0df7a2fbee621
702 Bytes Preview Download
md5:fdba4a2f7d0614dc892e0a8045cf6af9
262 Bytes Preview Download
md5:c499d8ec85cde3b642137020a7ac576d
509 Bytes Preview Download
md5:8eee9a3ca2ad9c1bfd69b5b7a9038e4e
470 Bytes Preview Download
md5:e44564bbfc8e5c81e875890c0481dc80
599 Bytes Preview Download
md5:0f8fad4b44556355f76300d210ceaef3
317 Bytes Preview Download
md5:7263c9c22c92905c1ddaf63596a16ba0
608 Bytes Preview Download
md5:3b1b1c84fffeaa748fa9671f9eb6b4ad
950 Bytes Preview Download
md5:b902eff4a10b6e6efc20453f939aa8ae
456 Bytes Preview Download
md5:1042b28c0e6614d735af2181d6a024d0
30.7 kB Preview Download
md5:48c0c7d70685134b555a4a0fe917505a
97.6 kB Preview Download
md5:d95b87fce835771d93bbcdc562039f01
53.7 kB Preview Download
md5:59500621f6d6eff3a58b57930e6055ae
2.6 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 10.1016/j.neunet.2022.02.022 (DOI)