There is a newer version of the record available.

Published November 11, 2021 | Version v2
Preprint Open

The Riemann Hypothesis Could Be True

Creators

  • 1. CopSonic

Description

The Riemann hypothesis has been considered to be the most important unsolved problem in pure mathematics. The David Hilbert's list of 23 unsolved problems contains the Riemann hypothesis. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis could be true.

Files

manuscript.pdf

Files (124.3 kB)

Name Size Download all
md5:cd2b408529b0e0627f00a36cb2c3f19e
124.3 kB Preview Download