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Abstract

The Riemann hypothesis has been considered to be the most important unsolved problem in pure
mathematics. The David Hilbert’s list of 23 unsolved problems contains the Riemann hypothesis.
Besides, it is one of the Clay Mathematics Institute’s Millennium Prize Problems. The Robin
criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < eγ × n ×
log log n holds for all natural numbers n > 5040, where σ(x) is the sum-of-divisors function
and γ ≈ 0.57721 is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann
hypothesis is true if and only if the inequality

∏
q≤qn

q
q−1 > eγ× log θ(qn) is satisfied for all primes

qn > 2, where θ(x) is the Chebyshev function. Using both inequalities, we show that the Riemann
hypothesis could be true.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only
at the negative even integers and complex numbers with real part 1

2 [1, 2]. In mathematics, the
Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

where q ≤ x means all the prime numbers q that are less than or equal to x. Let Nn = 2 × 3 ×
5 × 7 × 11 × · · · × pn denotes a primorial number of order n such that pn is the nth prime number.
Thus, θ(qn) = log Nn. Say Nicolas(qn) holds provided∏

q≤qn

q
q − 1

> eγ × log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The
importance of this inequality is:
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Theorem 1.1. Nicolas(qn) holds for all prime numbers qn > 2 if and only if the Riemann hy-
pothesis is true [1].

As usual σ(n) is the sum-of-divisors function of n [3]:∑
d|n

d

where d | n means the integer d divides n and d ∤ n signifies that the integer d does not divide n.
Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n) < eγ × log log n.

The importance of this inequality is:

Theorem 1.2. If the Riemann Hypothesis is false, then there are infinitely many natural numbers
n > 5040 such that Robins(n) does not hold [2].

It is known that Robins(n) holds for many classes of numbers n.We recall that an integer n is
said to be square free if for every prime divisor q of n we have q2 ∤ n [3].

Theorem 1.3. Robins(n) holds for all natural numbers n > 5040 that are square free [3].

Let q1 = 2, q2 = 3, . . . , qm be the first m consecutive primes, then an integer of the form∏m
i=1 qai

i with a1 ≥ a2 ≥ · · · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [3]. Based on the
theorem 1.2, we know this result:

Theorem 1.4. If the Riemann Hypothesis is false, then there are infinitely many natural numbers
n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does not hold [3].

We define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [4]. For
all real numbers x ≥ 2, the function u(x) is defined as follows

u(x) =
∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

For all real numbers x > 1, we define:

δ(x) =

∑
q≤x

1
q
− log log x − B

 .
Definition 1.5. We define another function:

ϖ(x) =

∑
q≤x

1
q
− log log θ(x) − B


for all real numbers x ≥ 3.

Putting all together yields the proof that the inequality ϖ(p) > u(p) is satisfied for a prime
number p ≥ 3 if and only if Nicolas(p) holds. In this way, we introduce another criterion for the
Riemann hypothesis based on the Nicolas criterion and deduce some of its consequences.
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2. Known Results

We know from the constant H, the following formula:

Theorem 2.1. [3]. ∑
q

(
log(

q
q − 1

) −
1
q

)
= γ − B = H.

We know this property for the Chebyshev function:

Theorem 2.2. [5].

lim
x→∞

θ(x)
x
= 1.

Mertens second theorem states that:

Theorem 2.3. [4].
lim
x→∞
δ(x) = 0.

We know these properties for the function f (n):

Theorem 2.4. [6]. Let
∏m

i=1 qai
i be the representation of n as a product of primes q1 < · · · < qm

with natural numbers as exponents a1, . . . , am. Then,

f (n) =

 m∏
i=1

qi

qi − 1

 × m∏
i=1

1 − 1

qai+1
i

 .
Theorem 2.5. [3]. For all natural numbers n > 1:

f (n) <
∏
q|n

q
q − 1

.

We know this result for the Riemann zeta function:

Theorem 2.6. [7].
∞∏

k=1

1
1 − 1

q2
k

=

∞∏
k=1

q2
k

q2
k − 1

= ζ(2) =
π2

6
.

Finally, we know that:

Theorem 2.7. [1]. For all real numbers x ≥ 2:

0 < u(x) ≤
1

2 × (x − 1)
.

3. A Central Theorem

The following is a key theorem. It gives an upper bound on f (n) that holds for all natural
numbers n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for
all natural numbers n. Further the bound only uses the primes that divide n and not how many
times they divide n.
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Theorem 3.1. Let n > 1 and let all its prime divisors be q1 < · · · < qm. Then,

f (n) <
π2

6
×

m∏
i=1

qi + 1
qi
.

Proof. We use that theorem 2.5:

f (n) <
m∏

i=1

qi

qi − 1
.

Now, for every prime q > 1,
1

1 − 1
q2

=
q2

q2 − 1
.

So

1
1 − 1

q2

×
q + 1

q
=

q2

q2 − 1
×

q + 1
q

=
q

q − 1
.

Then by theorem 2.6,
m∏

i=1

1
1 − 1

q2
i

< ζ(2) =
π2

6
.

Putting this together yields the proof:

f (n) <
m∏

i=1

qi

qi − 1

≤

m∏
i=1

1
1 − 1

q2
i

×
qi + 1

qi

<
π2

6
×

m∏
i=1

qi + 1
qi
.

4. A Simple Case

We can easily prove that Robins(n) is true for certain kind of numbers:

Theorem 4.1. Robins(n) holds for all natural numbers n > 5040 when q ≤ 5, where q is the
largest prime divisor of n.

Proof. Let n > 5040 and let all its prime divisors be q1 < · · · < qm ≤ 5, then we need to prove

f (n) < eγ × log log n
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that is true when
m∏

i=1

qi

qi − 1
≤ eγ × log log n

according to the theorem 2.5. For the prime divisors q1 < · · · < qm ≤ 5,

m∏
i=1

qi

qi − 1
≤

2 × 3 × 5
1 × 2 × 4

= 3.75 < eγ × log log(5040) ≈ 3.81.

For all natural numbers n > 5040, we note that

eγ × log log(5040) < eγ × log log n

and therefore, the proof is complete when q1 < · · · < qm ≤ 5.

5. The Functionϖ(x)

Theorem 5.1. The inequality ϖ(p) > u(p) is satisfied for a prime number p ≥ 3 if and only if
Nicolas(p) holds.

Proof. We start from the inequality:
ϖ(p) > u(p)

which is equivalent to ∑
q≤p

1
q
− log log θ(p) − B

 >∑
q>p

(
log(

q
q − 1

) −
1
q

)
.

We add the following formula to the both sides of the inequality,∑
q≤p

(
log(

q
q − 1

) −
1
q

)
and due to the theorem 2.1, we obtain that∑

q≤p

log(
q

q − 1
) − log log θ(p) − B > H

because of

H =
∑
q≤p

(
log(

q
q − 1

) −
1
q

)
+

∑
q>p

(
log(

q
q − 1

) −
1
q

)
and ∑

q≤p

log(
q

q − 1
) =

∑
q≤p

1
q
+

∑
q≤p

(
log(

q
q − 1

) −
1
q

)
.

We distribute it and remove B from the both sides:∑
q≤p

log(
q

q − 1
) > γ + log log θ(p)

5



since H = γ − B. If we apply the exponentiation to the both sides of the inequality, then we have
that ∏

q≤p

q
q − 1

> eγ × log θ(p)

which means that Nicolas(p) holds. The same happens in the reverse implication.

Theorem 5.2. The Riemann hypothesis is true if and only if the inequality ϖ(p) > u(p) is
satisfied for all prime numbers p ≥ 3.

Proof. This is a direct consequence of theorems 1.1 and 5.1.

Theorem 5.3.
lim
x→∞
ϖ(x) = 0.

Proof. We know that limx→∞ϖ(x) = 0 for the limits limx→∞ δ(x) = 0 and limx→∞
θ(x)

x = 1. In
this way, this is a consequence from the theorems 2.2 and 2.3.

6. Robin and Nicolas Inequalities

Theorem 6.1. Let
∏m

i=1 qai
i be the representation of an Hardy-Ramanujan integer n > 5040 as a

product of primes q1 < · · · < qm with natural numbers as exponents a1 ≥ a2 ≥ · · · ≥ am ≥ 0. If
Robins(n) does not hold, then Nicolas(qm) holds indeed.

Proof. When Robins(n) does not hold, then

f (n) ≥ eγ × log log n.

We assume that Nicolas(qm) does not hold as well. Consequently,∏
q≤qm

q
q − 1

≤ eγ × log log Nm.

According to the theorem 2.5,

eγ × log log Nm ≥
∏
q≤qm

q
q − 1

> f (n)
≥ eγ × log log n.

However, this implies that Nm > n which is a contradiction since n > 5040 is an Hardy-
Ramanujan integer.

7. Ancillary Theorem

Theorem 7.1. ∑
q

(
1
q
− log(1 +

1
q

)
)
= log(

π2

6
) − H.
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Proof. If we add H to ∑
q

(
1
q
− log(1 +

1
q

)
)

then we obtain that

H +
∑

q

(
1
q
− log(1 +

1
q

)
)
= H +

∑
q

(
1
q
− log(

q + 1
q

)
)

=
∑

q

(
log(

q
q − 1

) −
1
q

)
+

∑
q

(
1
q
− log(

q + 1
q

)
)

=
∑

q

(
log(

q
q − 1

) − log(
q + 1

q
)
)

=
∑

q

(
log(

q
q − 1

) + log(
q

q + 1
)
)

=
∑

q

(
log(

q2

(q − 1) × (q + 1)
)
)

=
∑

q

(
log(

q2

(q2 − 1)
)
)

= log(
π2

6
)

according to the theorems 2.1 and 2.6. Therefore, the proof is done.

8. Main Insight

The next theorem is a main insight.

Theorem 8.1. Let π
2

6 × log log n′ ≤ log log n for some natural number n > 5040 such that n′ is
the square free kernel of the natural number n. Then Robins(n) holds.

Proof. Let n′ be the square free kernel of the natural number n, that is the product of the distinct
primes q1, . . . , qm. By assumption we have that

π2

6
× log log n′ ≤ log log n.

For all square free n′ ≤ 5040, Robins(n′) holds if and only if n′ < {2, 3, 5, 6, 10, 30} [3]. However,
Robins(n) holds for all natural numbers n > 5040 when n′ ∈ {2, 3, 5, 6, 10, 15, 30} due to the
theorem 4.1. When n′ > 5040, we know that Robins(n′) holds and so

f (n′) < eγ × log log n′.

By the previous theorem 3.1:

f (n) <
π2

6
×

m∏
i=1

qi + 1
qi
.

7



Suppose by way of contradiction that Robins(n) fails. Then

f (n) ≥ eγ × log log n.

We claim that
π2

6
×

m∏
i=1

qi + 1
qi
> eγ × log log n.

Since otherwise we would have a contradiction. This shows that

π2

6
×

m∏
i=1

qi + 1
qi
>
π2

6
× eγ × log log n′.

Thus
m∏

i=1

qi + 1
qi
> eγ × log log n′,

and
m∏

i=1

qi + 1
qi
> f (n′),

This is a contradiction since f (n′) is equal to

(q1 + 1) × · · · × (qm + 1)
q1 × · · · × qm

according to the formula f (x) for the square free numbers [3].

9. Proof of Main Theorem

Theorem 9.1. The Riemann hypothesis could be true.

Proof. We claim that for every sufficiently large Hardy-Ramanujan integer n > 5040, then
Robins(n) could always hold. Let

∏m
i=1 qai

i be the representation of a sufficiently large Hardy-
Ramanujan integer n > 5040 as a product of primes q1 < · · · < qm with natural numbers as
exponents a1 ≥ a2 ≥ · · · ≥ am ≥ 0. Suppose that Robins(n) does not hold and so, the Riemann
hypothesis would be false. Hence,

f (n) ≥ eγ × log log n.

We use that theorem 2.4, m∏
i=1

qi

qi − 1

 × m∏
i=1

1 − 1

qai+1
i

 ≥ eγ × log log n

which is equivalent to m∏
i=1

q2
i

q2
i − 1

 ×  m∏
i=1

qi + 1
qi

 ×  m∏
i=1

(1 −
1

qai+1
i

)

 ≥ eγ × log log n.
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This is equivalent to

log log Nm

log log n
×

 m∏
i=1

q2
i

q2
i − 1

 ×  m∏
i=1

qi + 1
qi

 ×  m∏
i=1

(1 −
1

qai+1
i

)

 ≥ eγ × log log Nm

where Nm is the primorial number of order m. If we apply the logarithm to the both sides of the
inequality, then

log(
log log Nm

log log n
) + log

 m∏
i=1

q2
i

q2
i − 1

 + log

 m∏
i=1

qi + 1
qi

 + log

 m∏
i=1

(1 −
1

qai+1
i

)

 ≥ γ + log log θ(qm)

because of log Nm = θ(qm). Let’s multiply by −1 the both sides of the inequality,

log(
log log n

log log Nm
)− log

 m∏
i=1

q2
i

q2
i − 1

− log

 m∏
i=1

qi + 1
qi

+ log

 m∏
i=1

(
qai+1

i

qai+1
i − 1

)

 ≤ −γ− log log θ(qm)

which is equivalent to

log(
log log n

log log Nm
) − log

 m∏
i=1

q2
i

q2
i − 1

 +
∑

q≤qm

1
q

 − log

 m∏
i=1

qi + 1
qi

 + log

 m∏
i=1

(
qai+1

i

qai+1
i − 1

)


≤

∑
q≤qm

1
q

 − γ − log log θ(qm)

after adding
∑

q≤qm
1
q to the both sides of the inequality. This the same as

log(
log log n

log log Nm
)−log

 m∏
i=1

q2
i

q2
i − 1

+∑
q

(
1
q
− log(1 +

1
q

)
)
−
∑
q>qm

(
1
q
− log(1 +

1
q

)
)
+log

 m∏
i=1

(
qai+1

i

qai+1
i − 1

)


≤ ϖ(qm) − H

which is

log(
log log n

log log Nm
) − log

 m∏
i=1

q2
i

q2
i − 1

 −∑
q>qm

(
1
q
− log(1 +

1
q

)
)
+ log(

π2

6
) + log

 m∏
i=1

(
qai+1

i

qai+1
i − 1

)


≤ u(qm) + ε

due to the definition 1.5 and the theorems 2.1, 5.1, 5.3, 6.1 and 7.1, where ε = ϖ(qm)−u(qm) could
be a sufficiently small positive real number that goes to 0 when qm tends to infinity. Actually,
qm cannot have an upper bound under our assumption, so the positive value ε gets smaller and
smaller as the chosen Hardy-Ramanujan integer n grows. In general, if qm would have an upper
bound, then our initial assumption (which is that there would be infinitely many natural numbers
n > 5040 which are an Hardy-Ramanujan integer and counterexample of the Robin inequality)
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fails as a consequence of the theorem 8.1. We know that

u(qm) +
∑
q>qm

(
1
q
− log(1 +

1
q

)
)
+ log

 m∏
i=1

q2
i

q2
i − 1


=

∑
q>qm

(
log(

q
q − 1

) −
1
q

)
+

∑
q>qm

(
1
q
− log(1 +

1
q

)
)
+ log

 m∏
i=1

q2
i

q2
i − 1


=

∑
q>qm

(
log(

q
q − 1

) − log(1 +
1
q

)
)
+ log

 m∏
i=1

q2
i

q2
i − 1


=

∑
q>qm

(
log(

q
q − 1

) + log(
q

q + 1
)
)
+ log

 m∏
i=1

q2
i

q2
i − 1


=

∑
q>qm

(
log(

q2

q2 − 1
)
)
+ log

 m∏
i=1

q2
i

q2
i − 1


=

∑
q

(
log(

q2

q2 − 1
)
)

= log(
π2

6
)

using the theorem 2.6. It is enough to distribute and remove the value of log( π
2

6 ) from the both
sides to show that

log(
log log n

log log Nm
) + log

 m∏
i=1

(
qai+1

i

qai+1
i − 1

)

 ≤ ε
which is equivalent to

(
log log n

log log Nm
) ×

m∏
i=1

 qai+1
i

qai+1
i − 1

 ≤ eε.

However, this could be false for a sufficiently small value of ε, since we know that ε tends to 0 as
n grows. In addition, we know that log log n

log log Nm
> 1 due to the theorem 1.3. In conclusion, for every

sufficiently large Hardy-Ramanujan integer n > 5040, then Robins(n) could always hold. By
contraposition, the Riemann hypothesis could be true, because of the theorems 1.2 and 1.4.
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