Published October 31, 2021 | Version v1
Journal article Open

Constructing and analyzing mathematical model of plasma characteristics in the active region of integrated p-i-n-structures by the methods of perturbation theory and conformal mappings

  • 1. National University of Water and Environmental Engineering

Description

The results of mathematical modeling of stationary physical processes in the electron-hole plasma of the active region (i-region) of integral p-i-n-structures are presented. The mathematical model is written in the framework of the hydrodynamic thermal approximation, taking into account the phenomenological data on the effect on the dynamic characteristics of charge carriers of heating of the electron-hole plasma as a result of the release of Joule heat in the volume of the i-th region and the release of recombination energy. The model is based on a nonlinear boundary value problem on a given spatial domain with curvilinear sections of the boundary for the system of equations for the continuity of the current of charge carriers, Poisson, and thermal conductivity. The statement of the problem contains a naturally formed small parameter, which made it possible to use asymptotic methods for its analytical-numerical solution. A model nonlinear boundary value problem with a small parameter is reduced to a sequence of linear boundary value problems by the methods of perturbation theory, and the physical domain of the problem with curvilinear sections of the boundary is reduced to the canonical form by the method of conformal mappings. Stationary distributions of charge carrier concentrations and the corresponding temperature field in the active region of p-i-n-structures are obtained in the form of asymptotic series in powers of a small parameter. The process of refining solutions is iterative, with the alternate fixation of unknown tasks at different stages of the iterative process. The asymptotic series describing the behavior of the plasma concentration and potential in the region under study, in contrast to the classical ones, contain boundary layer corrections. It was found that boundary functions play a key role in describing the electrostatic plasma field. The proposed approach to solving the corresponding nonlinear problem can significantly save computing resources

Files

Constructing and analyzing mathematical model of plasma characteristics in the active region of integrated p-i-n-structures by the methods of perturbation theory and conformal mappings.pdf

Additional details

References

  • Sze, S. M., Ng, K. K. (2006). Physics of Semiconductor Devices. John Wiley & Sons. doi: https://doi.org/10.1002/0470068329
  • Kwok, K. (2002). Complete Guide to Semiconductor Devices. Wiley-IEEE Press, 768. URL: https://ieeexplore.ieee.org/book/5271197
  • Koshevaya, S. V., Kishenko, Ya. I., Smoilovskii, М. I., Trapezon, V. А. (1989). Fast wideband modulators on p–i–n structures. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 32 (10), 14–23.
  • Adirovich, E. I., Karageorgiy-Alkalaev, P. M., Leyderman, A. Yu. (1978). Toki dvoynoy inzhektsii v poluprovodnikah. Moscow: Sovetskoe radio, 320.
  • Polsky, B. S., Rimshans, J. S. (1981). Numerical simulation of transient processes in 2-D bipolar transistors. Solid-State Electronics, 24 (12), 1081–1085. doi: https://doi.org/10.1016/0038-1101(81)90173-8
  • Nikolaeva, V. A., Ryzhii, V. I., Chetverushkin, B. N. (1988). A numerical method for the simulation of two-dimensional semiconductor structures using quasi-hydrodynamic approach. Dokl. Akad. Nauk SSSR, 298 (6), 1367–1370. Available at: http://www.mathnet.ru/links/8f8a384d7d564f46bf7f5a3a2d8ef274/dan48205.pdf
  • Bonch-Bruevich, V. L., Kalashnikov, S. G. (1982). Physics of Semiconductors. Berlin: VEB.
  • Bushyager, N., McGarvey, B., Tentzeris, M. M. (1997). Adaptive numerical modeling of RF structures requiring the coupling of Maxwell's, mechanical and solid-state equations. IEEE Symposium on microwave theory and techniques, 337–343.
  • Samarskii, A. A. (2001). The Theory of Difference Schemes. CRC Press, 786. doi: https://doi.org/10.1201/9780203908518
  • Bomba, A. Ya., Moroz, I. P. (2021). The diffusion-drift process with account heating and recombination in the p-i-n diodes active region mathematical modeling by the perturbation theory methods. Zhurnal obchysliuvalnoi ta prykladnoi matematyky, 1 (135), 29–35. Available at: http://nbuv.gov.ua/UJRN/jopm_2021_1_5
  • Belyanin, M. P. (1986). On the asymptotic solution of a model of a (p − n) junction. USSR Computational Mathematics and Mathematical Physics, 26 (1), 188–192. doi: https://doi.org/10.1016/0041-5553(86)90206-5
  • Vasil'eva, A. B., Stel'makh, V. G. (1977). Singularly disturbed systems of the theory of semiconductor devices. USSR Computational Mathematics and Mathematical Physics, 17 (2), 48–58. doi: https://doi.org/10.1016/0041-5553(77)90035-0
  • Birjukova, L. Yu., Nikolaeva, V. A., Ryzhii, V. I., Chetverushkin, B. N. (1989). Quasihydrodynamical algorithms for the calculation of processes in electron plasma in submicron semiconductor structures. Matematicheskoe modelirovanie, 1 (5), 11–22. Available at: http://www.mathnet.ru/links/669ffd8d3f706879f9701e2e77a0a0b2/mm2551.pdf
  • Prokopyev, A. I., Mesheryakov, S. A. (1999). Static characteristics of high-barrier Schottky diode under high injection level. Solid-State Electronics, 43 (9), 1747–1753. doi: https://doi.org/10.1016/s0038-1101(99)00138-0
  • Ou, H.-H., Tang, T.-W. (1987). Numerical modeling of hot carriers in submicrometer silicon BJT's. IEEE Transactions on Electron Devices, 34 (7), 1533–1539. doi: https://doi.org/10.1109/t-ed.1987.23116
  • Ellison, G. (2011). Thermal computations for electronics. Conductive, radiative, and convective air cooling. CRC Press, 416. doi: https://doi.org/10.1201/b12772
  • Alex, V., Finkbeiner, S., Weber, J. (1996). Temperature dependence of the indirect energy gap in crystalline silicon. Journal of Applied Physics, 79 (9), 6943–6946. doi: https://doi.org/10.1063/1.362447
  • Gurtov, V. A., Osaulenko, R. N. (2012). Fizika tverdogo tela dlya inzhenerov. Moscow: Tekhnosfera, 560.
  • Grimalsky, V. V., Kishenko, Ya. I., Koshevaya, S. V., Moroz, I. P. (1994). The Interaction of Powerful Electromagnetic Waves With Integrated p-i-n-structures. Doc. of Int. Symp. "Physics and Engineering of Mm and Submm Waves". Kharkiv, 238–239.
  • Tikhonov, A. N. (1952). Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik, 31 (73), 575–586. Available at: http://www.mathnet.ru/links/96c944da15809bf846a704e541c81fad/sm5548.pdf
  • Vishik, M. I., Lyusternik, L. A. (1957). Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Matematicheskikh Nauk, 12 (5), 3–122. Available at: http://www.mathnet.ru/links/36cd641901b4ac6e4953efbd88f0a953/rm7705.pdf
  • Vasil'eva, A. B., Butuzov, V. F., Kalachev, L. V. (1995). The Boundary Function Method for Singular Perturbation Problems. SIAM. doi: https://doi.org/10.1137/1.9781611970784
  • Bomba, A. Ya., Prysiazhniuk, I. M., Prysiazhniuk, O. V. (2017). Metody teorii zburen prohnozuvannia protsesiv teplomasoperenesennia v porystykh ta mikroporystykh seredovyshchakh. Rivne: O.Zen, 291.
  • Bomba, A. Ya. (1982). Pro asymptotychnyi metod nablyzhenoho rozviazannia odniei zadachi masoperenosu pry filtratsiyi v porystomu seredovyshchi. Ukrainskyi matematychnyi zhurnal, 34 (4), 37–40.
  • Smith, D. R. (1985). Singular-Perturbation Theory. An Introduction with Applications. Cambridge: Cambridge Univ. Press, 520. Available at: https://books.google.com.ua/books?id=cEszbdam0zwC&printsec=frontcover&hl=ru#v=onepage&q&f=false
  • Sveshnikov, A. G., Tikhonov, А. Н. (1982). The Theory Of Functions Of A Complex Variable. Moscow: Mir Publisher, 344.
  • Fuchs, B. A., Shabat, B. V. (1964). Functions of a complex variable and some of their applications. Pergamon. doi: https://doi.org/10.1016/C2013-0-01663-5
  • Bomba, A. Y., Moroz, I. P., Boichura, M. V. (2021). The optimization of the shape and size of the injection contacts of the integrated p-i-n-structures on the base of using the conformal mapping method. Radio Electronics, Computer Science, Control, 1 (1), 14–28. doi: https://doi.org/10.15588/1607-3274-2021-1-2
  • Bomba, A., Boichura, M., Sydorchuk, B. (2020). Generalization of numerical quasiconformal mapping methods for geological problems. Eastern-European Journal of Enterprise Technologies, 5 (4 (107)), 45–54. doi: https://doi.org/10.15587/1729-4061.2020.215045