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1. Introduction

In microwave technology, p-i-n-diodes (diodes with a 
wide base) are widely used for switching the electromagnetic 
field [1, 2]. The operation of switching p-i-n-diodes is based 
on the possibility of creating, under the influence of the 
control current, a highly concentrated electron-hole plasma 
in the active region (n-region) of the diode. The appearance 
of charged particles in the n-region leads to a change in the 
electrodynamic characteristics of the switching system and, 
as a consequence, to the extinction of the electromagnetic 
field presented to the switch.

The basic characteristics of switches based on p-i-n-di-
odes – the level of the switched power of the microwave sig-
nal, the modulation depth, the speed of response – determine 

the concentration of the electron-hole plasma in the active 
region, the pulse density, energy (averaged characteristics 
of the plasma) and the design of the p-i-n-diodes. Complex 
processes occur in the active region of the diode when the 
electron and hole currents flow. The main ones are injection 
of charge carriers from highly doped bands through n-i and 
p-i junctions, electron-hole diffusion and drift, recombina-
tion processes in the bulk and on the surface of the n-region, 
energy transfer of electrons and holes to the crystal lattice, 
and the like. These processes are described by nonlinear 
mathematical models.

The development of technology of integrated circuits led 
to the emergence of p-i-n-diodes in integrated design: sur-
face-oriented p-i-n-structures with deep contacts [3] (Fig. 1). 
A typical design of an integrated p-i-n-structure is a plate 
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The results of mathematical modeling of station-
ary physical processes in the electron-hole plasma of 
the active region (i-region) of integrated p-i-n-struc-
tures are presented. The mathematical model is writ-
ten in the framework of the hydrodynamic thermal 
approximation, taking into account the phenomeno-
logical data on the effect on the dynamic characteris-
tics of charge carriers of heating of the electron-hole 
plasma as a result of the release of Joule heat in the 
volume of the i-th region and the release of recom-
bination energy. The model is based on a nonlinear 
boundary value problem on a given spatial domain 
with curvilinear sections of the boundary for the sys-
tem of equations for the continuity of the current of 
charge carriers, Poisson, and thermal conductivity. 
The statement of the problem contains a naturally 
formed small parameter, which made it possible to use 
asymptotic methods for its analytical-numerical solu-
tion. A model nonlinear boundary value problem with 
a small parameter is reduced to a sequence of linear 
boundary value problems by the methods of perturba-
tion theory, and the physical domain of the problem 
with curvilinear sections of the boundary is reduced to 
the canonical form by the method of conformal map-
pings. Stationary distributions of charge carrier con-
centrations and the corresponding temperature field 
in the active region of p-i-n-structures are obtained 
in the form of asymptotic series in powers of a small 
parameter. The process of refining solutions is itera-
tive, with the alternate fixation of unknown tasks at 
different stages of the iterative process. The asymp-
totic series describing the behavior of the plasma con-
centration and potential in the region under study, in 
contrast to the classical ones, contain boundary layer 
corrections. It was found that boundary functions 
play a key role in describing the electrostatic plas-
ma field. The proposed approach to solving the cor-
responding nonlinear problem can significantly save 
computing resources

Keywords: asymptotic series, boundary layer 
correction, conformal mappings, singularity, elec-
tron-hole plasma, p-i-n-structure

UDC 517.9: 621.382.233
DOI: 10.15587/1729-4061.2021.243097

Received date 10.08.2021

Accepted date 16.09.2021

Published date 25.10.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/5 ( 113 ) 2021

52

made of a semiconductor material (a region of an intrinsic 
semiconductor – i-region), on the surface of which donor 
(n) and acceptor (p) zones are formed with metal contacts 
brought to them. According to the active region of the inte-
grated p-i-n-structure has a complex geometry.

The design of integrated p-i-n-structures is associated 
with the solution of the complex problem of the selection 
of semiconductor materials, the choice of the geometric di-
mensions of the structure elements, the characteristics of the 
control signals. In this case, the following conditions must 
be met:

– ensuring the matching of the p-i-n-structure with the 
signal transmission line;

– achieving optimal switching characteristics in a given 
frequency range;

– compliance with the required temperature regime.
Obviously, one of the stages of designing integrated p-i-n-

structures is associated with solving a nonlinear mathemati-
cal problem of the dynamics of charge carriers, which is posed 
in a non-canonical domain. In the general case, such complex 
problems can be solved only by numerical methods with the 
involvement of significant computer resources. In this regard, 
the problem of increasing the efficiency of algorithms is ur-
gent. It is especially aggravated when solving optimization 
problems.

To improve the design efficiency, it is proposed to decom-
pose the original problem by methods of perturbation theory 
and conformal transformations. This procedure allows one 
to obtain a sequence of linear problems posed in the canoni-
cal domain and are solved by analytical-numerical methods.

2. Literature review and problem statement

The drift-diffusion model has become a classic in the 
design of p-i-n-diode structures. The properties of stationary 
and non-stationary mathematical models of p-i-n-structures 
and the corresponding experimental data were considered, 
for example, in the monograph [4]. In [5], the drift-diffusion 
model is the basis for the numerical analysis of semiconductor 
devices. Alternative mathematical models of electron-hole 
plasma are quasi-hydrodynamic model [6] and variations of 
the kinetic model [7, 8]. The diffusion-drift model is char-
acterized by relative ease of use; it allows one to obtain the 
averaged characteristics of the plasma in the active region of 
electronic devices. The scope of application of this model is 
limited by the characteristic dimensions of semiconductor 
elements, which exceed the relaxation lengths of the pulse 
and the energy of the charge carriers. According to the dif-
fusion-drift model, the effects associated with the imbalance 
and nonlocality of the electron-hole plasma are not taken 
into account. These limitations are significant in some cases, 
for example, when designing GaAs control structures. The 

diffusion-drift model is based on a nonlinear system of para-
bolic equations of current continuity with the corresponding 
boundary conditions, which is jointly solved by the Poisson 
equation for the electric field potential of charged plasma 
particles. Traditional approaches to the analysis of such a 
model are based on the use of linearization methods (for 
example, the ambipolar diffusion approximation [7] and the 
use of numerical methods [9] are used.

Let’s separately note the use of asymptotic methods for 
splitting the corresponding problems. In [10], a one-dimen-
sional stationary mathematical model of a p-i-n-diode in the 
diffusion-drift thermal approximation was proposed and 
analyzed by asymptotic methods. Similar methods were used 
to analyze the mathematical model of the p-n-junction [11]. 
The properties of a system of ordinary differential equations, 
which are the basis for mathematical models of semiconduc-
tor electronics, are considered in [12].

The advantage of linearization methods is the ability to 
obtain, in some cases, the simulation result in an analytical 
form. In this case, an acceptable level of modeling adequacy 
is not always achieved (as, for example, when working within 
the ambipolar diffusion approximation). On the contrary, 
numerical methods make it possible to obtain simulation 
results within the framework of the applied approximation 
methods with a relatively high accuracy. Difference schemes 
are most often used by themselves (for example, schemes 
of Samarsky, Scharfetter-Gummel, Tang, Mok, etc.). As a 
result of the analysis of the corresponding numerical algo-
rithms [13], the need to keep track of the issues of monoto-
nicity and stability of difference schemes is emphasized.

Mathematical modeling of the characteristics of an elec-
tron-hole plasma in semiconductor structures is complicated 
by the fact that the parameters of the models generally de-
pend on temperature. In [13], the corresponding mathemat-
ical model is constructed to calculate the characteristics of 
field-effect transistors, in [14] - for diodes with a Schottky 
barrier. In [15], the results of modeling the characteristics 
of bipolar transistors are reflected. The description of the 
plasma state of the refined drift-diffusion model includes an 
additional characteristic – temperature. The system of equa-
tions of the model is supplemented by an inhomogeneous 
heat conduction equation, which contains a description of 
local heat sources. Plasma heating is caused by the Joule 
effects and the release/absorption of energy as a result of 
the process of electron-hole recombination/generation [7]. 
Depending on the conditions of action on a semiconductor 
crystal, various recombination-generation mechanisms are 
manifested (Shockley-Read, therefore, exciton, plasma). 
Depending on the selected semiconductor material, the re-
fined mathematical models describe plasma, which can be in 
thermodynamic equilibrium with the crystal lattice (devices 
based on Si), and plasma, which has a temperature different 
from the crystal lattice (for example, AsGa). Along with the 
processes of heating semiconductor structures in tempera-
ture models, the processes of transfer of thermal energy to 
the environment by means of forced and natural convection 
and radiation are considered [16]. The exchange of energy 
with the environment is reflected in models, as a rule, by 
describing a special type of boundary conditions.

Thus, proceeding from the complexity of physical pro-
cesses in the electron-hole plasma of integrated surface-ori-
ented p-i-n-structures, let’s consider the problem of model-
ing the characteristics of switches with active elements on 
p-i-n-structures to be open. One of the ways to improve the 

Fig. 1. Schematic representation of the p-i-n-structure in the 
cross section of a rectangular waveguide
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algorithms for the design of switches within the framework 
of the application of the traditional diffusion-drift thermal 
approximation is to modify the corresponding system of the 
mathematical model, boundary and initial conditions based 
on the use of phenomenological data on the relationship 
between the model parameters. It is also advisable to decom-
pose the basic nonlinear model in order to reduce the level 
of its complexity. Let’s propose to solve the corresponding 
problems, which contain both regularly and singularly per-
turbed components, by asymptotic methods with conformal 
mappings of the physical domain of the problem.

3. The aim and objectives of research

The aim of research is to develop tools for the design 
system for semiconductor switching integrated p-i-n-struc-
tures with deep contacts. This will ensure the development 
of the theory of p-i-n-structures and will make it possible to 
design the corresponding microwave switching devices with 
specified characteristics.

To achieve the aim, the following objectives are set:
– propose an improved stationary diffusion-drift model 

for predicting the state of an electron-hole plasma in the ac-
tive region of p-i-n-structures, taking into account the effect 
of plasma heating and the peculiarities of the geometry of the 
physical region of the problem;

– apply the method of conformal transformations to 
bring the physical domain of the problem with curvilinear 
sections of the boundary to the canonical form;

– based on the development of methods of asymptotic 
corrections, develop a method for solving the correspond-
ing perturbed nonlinear boundary value problems for the 
system of equations of current continuity, Poisson, heat 
conduction;

– carry out numerical experiments.

4. Materials and methods of research

Placement of p-i-n-diodes in the integrated structure is pe-
riodic. Therefore, it is expedient to formulate a model problem 
for a typical element of the active region Gi (Fig. 1, 2).

The distributions of the concentration of charge carriers p 
(x, y, J), n (x, y, J) in the electron-hole plasma of the active re-
gion are established under the action of a control current with 
a density J due to the occurrence of diffusion-drift, recombina-
tion-generation processes. Concentrations of charge carriers 
in the hydrodynamic approximation describe the equations of 
continuity of the current of holes and electrons [6]:

∂
= − ∇⋅ − +

∂

1
,p p p

p
j R G

t e

∂
= ∇⋅ − +

∂

1
,n n n

n
j R G

t e
		  (1)

where

= − µ ∇ϕ − ∇


,p p pj e p eD p

= − µ ∇ϕ + ∇


,n n nj e n eD n 	 (2)

( )∆ϕ = − − + .de p n N 	 (3)

The notation is used here:
Nd – doping profile;
φ – electrical potential;
е –  electron charge;
Dp, Dn – diffusion coefficients of holes and electrons, 

respectively;
μp, μn – mobility (is the velocity vector) of charge carriers;
Rp, Rn, Gp, Gn – rates of recombination and generation.

In semiconductor materials, the dynamics of charge 
carriers is affected by the heating of the crystal and elec-
tron-hole plasma as a result of the release of Joule heat in the 
volume of the p-i-n-diode and the release of energy as a result 
of the recombination of charge carriers [6, 7, 14]. To describe 
the temperature field, let’s propose to use a modified heat 
conduction equation:

( )

( ) ( )

ρ
∂

ρ − λ ∇ =
∂

 α
= + ⋅ + − − + β 

  

2

div

,

t

n p g

T
c T

t

T
j j E R G E

T
	 (4)

where cρ – specific heat of the semiconductor material;
ρ – density of the substance;
λt – thermal conductivity coefficient;
Eg – semiconductor band gap;
R=Rn+Rp – rate of recombination of charge carriers;
G=Gn+Gp – rate of generation of electrons and holes; 

α, β – phenomenological steels (for Si – Eg=1.169 eV, α= 
=4.9∙10-4 eV/K, β=655 K, for GaAs – Eg=1.519 eV, α= 
=5.4∙10-4 eV/K, β=204 K [17]).

Plasma heating leads to a change in the diffusion coeffi-
cients and the mobility of charge carriers [18]. The mobility 
of electrons and holes is related to the diffusion coefficients 
by the following relations [7] (kB – Boltzmann constant):

μpkBT/e=Dp, μnkBT/e=Dn.	 (5)

The temperature dependences of the mobility of charge 
carriers are determined by phenomenological relationships, 
in particular, for Si in the operating temperature range of 
p-i-n-diodes, they take the form [18]:

μp(T)=μ0p(T/T0)–0.5, μn(T)=μ0n(T/T0)–0.5, T0=300 °K.  (6)

The rate of recombination of charge carriers is deter-
mined by processes of different types and properties of the 
semiconductor material. Based on the complexity of describ-
ing the combined action of recombination processes, the fol-
lowing phenomenological relationships are used to estimate 
the rate of recombination:

Fig. 2. 2D-model of an element of an integrated p-i-n-
structure (Gi region with injection n-i-, p-i-contacts)
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( )= τ*
0– / ,n nR n n  ( )= τ*

0– / ,p pR p p 	 (7)

where τ* ,p  τ*
n  – effective relaxation lifetimes of holes and 

electrons; n0, p0 – concentrations of balanced electrons and 
holes (in the active region of p-i-n-diodes, the concentrations 
of unbalanced and balanced charge carriers satisfy the con-
ditions n˃˃n0, p˃˃p0).

Charge carriers appear in the active region of p-i-n-di-
odes also due to the processes of generation of charge carriers 
by the mechanisms of impact ionization, tunneling, thermal 
transitions of electrons to the conduction band [7]. Under 
typical operating modes of p-i-n structures, recombination 
by impact ionization and tunneling is unlikely, and thermal 
generation of balanced charge carriers under thermal equi-
librium conditions is compensated by the reverse thermal 
recombination mechanism [7]. Therefore, in the future, gen-
eration processes will not be taken into account.

Equations (1)–(4) are supplemented with the following 
boundary conditions at the boundary of the domain ∂Gi=Li 
(Li=Ln⋃Lp⋃L0⋃L1, Fig. 2):

a) similarly to [19], let’s form the conditions that de-
termine the electric current density at the injection con-
tacts (8), (9) and on the side surface of the diode (10):
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where J – constant that determines the density of the in-
jection current (control current); v – normal vector to the 
region boundary; eαpp, eαnn, eαp*p, eαn*n – densities of the 
recombinant current; αn,p, α*n,p – rates of surface recombi-
nation of electrons and holes, which are generally different 
on the contact surfaces and on the lateral surface; on the 
face Ll the sought functions must satisfy the self-conjugation 
conditions:
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b) the drop in the applied voltage across the diode mainly 
occurs in the active region:

ϕ = 0,
nL

 ϕ = ,
pL

U 	 (11)

where U – applied voltage. Boundary conditions for the po-
tential in other parts of the surface: νϕ =′

0
0,

L
 νϕ =′

1
0.

L
The 

conditions are written on the basis that the active region of 
the p-i-n-diode is high in resistance compared to the highly 
doped regions;

c) the heat flux removed from the active area of the p-i-n-
diode through its surface is subject to the Newton-Richman 
law. Therefore, let’s supplement the heat conduction equa-
tion with conditions of the form:

( )∂
= −

∂ν 1 0 ,
nL

T
k T T ( )∂

= − −
∂ν 1 0 ,

pL

T
k T T  

( )∂
= −

∂ν
0

2 0 ,
L

T
k T T 	 (12)

where k1,2=σ1,2/λt, σ1,2 – heat transfer coefficients.
The nonlinear problem (1)–(12), posed on a region with cur-

vilinear boundaries, is a complex mathematical problem, which 
in most such cases is solved by numerical methods [13, 14]. In 
this case, the effectiveness of the computational algorithm can 
be achieved after meeting the requirements of monotonicity, 
stability, convergence. The procedure for solving such problems 
requires the involvement of significant computer resources. To 
solve the problem, it is proposed to use asymptotic approach-
es [20–25], which allow reducing the initial nonlinear problem 
to a sequence of linear boundary value problems. In this case, 
the physical domain of the problem with curvilinear sections of 
the boundary of the domain is reduced to the canonical form by 
using the method of conformal mappings [23, 26–28].

5. Results of solving the problem of predicting the state 
of an electron-hole plasma in a region with curvilinear 

boundaries

5. 1. Stationary diffusion-drift model of the state of 
an electron-hole plasma. Mathematical formulation of 
the problem

For a given form of injection contacts (y=gn(x, w, h), 
y=gp(x,w,h)), it is necessary to find solutions to 
the system of differential equations (1)–(4) in the re-
gion Gi=G1⋃G2⋃(∂G̅1⋂∂G̅2) (Fig. 3), G1={(x,y): 0<x<h, 
gn(x, w, h)<y<gp(x,w,h)}, G2={(x,y): h<x<h+b, 0<y<d}. The 
equations are supplemented by the boundary conditions (8)–
(12) on a closed loop L=LC*D*⋃LD*E*⋃LE*E⋃LED⋃LDC⋃LCC*, 
bounding the region Gi (Fig. 3). The transition from the 
three-dimensional physical domain of the problem to the 
two-dimensional one (Gi) is due to the homogeneity of the 
integrated p-i-n-structure along the OZ direction and the 
fulfillment of the condition d<<LB.

Let’s use additional restrictions:

1) EMW SWITCHING is organized so that the switch-
ing time of the switch significantly exceeds the characteris-
tic times of the dynamics of charge carriers in a semiconduc-
tor material. So, when a direct control current is applied to 
the contacts of the p-i-n-structure, a stationary distribution 
of charge carriers is established in the active region. There-
fore, the distribution of the concentration of charge carriers 
in the region Gi will be sought at =′ 0,tp  =′ 0;tn

2) the active region is weakly doped – the concentration 
of unbalanced electrons and holes significantly exceeds the 
concentration of impurities (Nd=0);

3) in the investigated operating mode, the lifetime of un-
balanced charge carriers in the active region and the thermal 
conductivity are constant values.

Fig. 3. The physical area of the problem
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Let’s rewrite equations (1)–(4) taking into ac-
count (5)–(7) for the stationary case. Let’s apply the 
normalization procedure: x̆=x/w, y̆=y/w, z̆=z/w, T̆=T/T0, 
φ̆ =eφ/(kBT0), Ŭ=eU/(kBT0), n̆=n/ni (0≤n̆≤nmax/ni), p̆=p/ni 
(0≤p̆≤pmax/ni), where ni – constant, determines the con-
centration of electrons in its own semiconductor, depends 
on the selected semiconductor material. After that, the 
system of equations (1)–(4) takes the form (the symbol “ˇ” 
is further omitted):

( )
( )
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( )
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Here the notation is used: μ=εε0kBT0/(e2w2ni) (small 
parameter µ~10–8÷10–6), 
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In this case, conditions (8)–(12) are reduced to the fol-
lowing form:
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The complexity of the boundary value problem (13)–(16) 
is due to the fact that the system of partial differential equa-
tions (13) is nonlinear and contains variable coefficients. 
The presence of curvilinear sections on the boundary of the 
region of integration further complicates the task. There-
fore, let’s propose to construct a conformal mapping of the 
physical domain of the problem Gi onto some canonical 
domain [26–29] Gi (Fig. 4, b), on the boundary of which 
conditions (14)–(16) must be satisfied.

Since the domain Gi is symmetric (gn(x, w, h)=–gp(x, w, h), 
Fig. 4, a), it is expedient to construct a mapping of its upper 
subdomain G’ with the boundary ∂G’=ABCDE onto the in-
terior rectangle (Fig. 4, b) ( ){ }= < < < <
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*
*' , : ,0G x y x x x y Q   
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functions x͂=x͂(x, y), y͂=y͂(x, y), the auxiliary parameters Q, Ẽ 
are unknown.

The corresponding problem is to solve the system of Cau-
chy-Riemann equations
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	 (17)

with boundary conditions:

< < + == =  

0 , 0 *,AB x h b yx x x  
= < <

= = 

0, 0 0.5
,

BC x y w
y y Q

( )< < == =  

*
0 , , , ,

nCD x h y g x w hx x x  

( ) ( )= + < < ∪ < < + =
= = 

, 0 ,
0,

AED x h b y d h x h b y d
y y 	 (18)

∂ ∂
− + =

∂ ∂∫
 

d d ,
MN

x x
x y Q

y x
 ∈ ,M BC  ∈ .N AED

Let’s note that the solutions of problem (17), (18) x͂=x͂(x, y) 
and y͂=y͂(x, y) from the physical point of view are, respectively, 
equipotential and force lines of the electrostatic field in the 
investigated region

5. 2. Application of the method of conformal mappings 
to transform the physical domain of the problem

The procedure for solving problem (17), (18) is labori-
ous. Significant simplifications can be achieved under the 
condition of the implementation of the inverse conformal 
mapping x͂=x͂(x, y)  і  y͂=y͂(x, y) as a result of solving the 
equations [26, 29]:

∂ ∂
+ =

∂ ∂ 

2 2

2 2 0,
x x

x y
 

∂ ∂
+ =

∂ ∂ 

2 2

2 2 0,
y y

x y
 ( )∀ ∈ ′, ,x y G 	 (19)

Fig. 4. Schematic images: a – conformal mesh in the physical 
region G’; b – corresponding parametric region G’

a b
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under the following boundary and “connecting” condi-
tions [28, 29]:

( ) = 

*, 0,y x y  ( )≤ ≤ + 

*0 , ,x x y h b  ≤ ≤0 ,y Q  

( ) = , 0,x x Q  ( )≤ ≤0 , 0.5 ,y x Q w ≤ ≤  

*
* ,x x x

( ) ( )( )=   

* *, , , , ,ny x y g x x y w h

( )≤ ≤ 

*0 , ,x x y h  ≤ ≤0 ,y Q

( ) = ,0 0.5 ,y x d  ( )≤ ≤ + ,0 ,h x x h b  ≤ ≤


  

*,
E

x x x

( ) = + ,0 ,x x h b  ( )≤ ≤0 ,0 0.5 ,y x d  ≤ ≤


  

* ,
E

x x x 	 (20)

( )
=

∂
=

∂
 

 



*

,
0,

x x

x x y

x
 ≤ ≤0 ,y Q

( )
=

∂
=

∂


 



,
0,

y Q

y x y

y
 ≤ ≤  

*
* ,x x x

( )

( )( ) ( )
=

 ∂
+ ∂  =

∂ ∂
+  ∂ ∂

 

 



 

 

 *

,

0,
, , , ,n

x x

x x y

x

g x x y w h y x y

x x

 ≤ ≤0 ,y Q

( )
=

∂
=

∂


 



0

,
0,

y

x x y

y
 ≤ ≤



  

*,
E

x x x

( )
=

∂
=

∂


 



0

,
0,

y

y x y

y
 ≤ ≤



  

* ,
E

x x x 	 (21)

where (


 ,
E

x 0) – point of the region G’, which corresponds to 
the point E of the region G”.

Let’s write an approximate representation of prob-
lem (19)–(21) in the uniform grid domain λ

 'G ={(x͂i, y͂j): 
x͂i=x͂*+iΔ x͂, =0, +1;i m  y͂j=jΔy͂, =0, +1;j l  Δ x͂=(x͂*–x͂*)/(m+1), 
Δy͂=Q/(l+1), λc=Δx͂/Δy͂, m,l∊Ν} using the difference repre-
sentation of the corresponding expressions [26, 29]. La-
place equation (21) is approximated as follows:

( )( ) ( )− + − += + λ + + λ +2 2
���� 0.5 / 1 ,i j i j i j c i j i j cx x x x x

( )( ) ( )− + − += + λ + + λ +2 2
���� 0.5 / 1 ,i j i j i j c i j i j cy y y y y

( )≤ ≤ ≤ ≤1 , 1 .i m j l 	 (22)

Here xi, j=x(x͂i,y͂j), yi, j=y(x͂i,y͂j), (xi, j,yi, j)∊G’λ, the conformal 
invariant is sought by:

( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

+ + + + + +

= =
+ +

+ +

+ + + + + +

λ ×
+ +

 − + − + ×  
 + − + − 

 − + − + 
 
 + − + − 

∑∑
2 2

1, 1 , 1 1, 1 , 1

2 20 0
1, , 1, ,

2 2

, 1 , , 1 ,

2 2

1, 1 1, 1, 1 1,

1
=

1 1

/

/ .

c

m l i j i j i j i j

i j
i j i j i j i j

i j i j i j i j

i j i j i j i j

m l

x x y y

x x y y

x x y y

x x y y
	 (23)

Boundary conditions (20), (21) can be rewritten as:

=0, 0,jy  ≤ ≤ +0,0 ,jx h b  = +0, 1,j l

+ =, 1 0,i lx  +≤ ≤, 10 0.5 ,i ly w  = +0, 1,i m

( )+ +=1, 1, , , ,m j n m jy g x w h  +≤ ≤1,0 ,m jx h  = +0, 1,j l

=,0 0.5 ,iy d  ≤ ≤ +,0 ,ih x h b  = + +


1, 1,
E

i m m

= +,0 ,ix h b  ≤ ≤,00 0.5 ,iy d  =


0, ,
E

i m 	 (24)

=0, 1, ,j jx x  = 1, ,j l

+ =, 1 , ,i l i ly y  = 1, ,i m

( ) ( )
+

+

+
=

− +
=∂

+ −
∂

1,

1, ,

1, ,

0,, ,

m j

m j m j

n
m j m j

x x

x x

g x w h
y y

x

 = 1, ,j l

=,0 ,1,i ix x  = +


1, ,
E

i m m

=,0 ,1,i iy y  =


1, ,
E

i m 	 (25)

where 


–1
E

m  – the number of nodes in the section AE (de-
termined in the process of solving the problem).

5. 3. Technique for parallelizing the nonlinear model 
of diffusion-drift and thermal processes in the active re-
gion of p-i-n diodes

As a result of changing the coordinates x=x(x͂i, y͂j), 
y=y(x͂i, y͂j) and transforming the physical domain of the prob-
lem in the corresponding parametric domain Gi, the mathe-
matical model of the stationary diffusion process (13)–(16) 
takes the following form:

( )

( )

( )

( ) ( )
( )

( )

−


∆ = −∇ ⋅∇ϕ − ∆ϕ + ∆


∆ = ∇ ⋅∇ϕ + ∆ϕ + ∆

µ∆ϕ = − − ∆
   µ ∇ϕ + ∇ + ⋅∇ϕ +   +µ ∇ϕ − ∇    ∆ = −µδ  − α  γ + γ     +   β  ∆ +           
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



0.5 0
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1
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n
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g
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p p p p
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p n
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p n
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	 (26)

p=p(x͂i, y͂j), n=n(x͂i, y͂j), φ=φ(x͂i, y͂j), T=T(x͂i, y͂j),

   ∂ ∂ ∂ ∂   ∆ = + = +         ∂ ∂ ∂ ∂   
   



2 22 2
x x y y
x y x y

 

– determinant of the Jacobi matrix of the transformation;
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α∂
− + − = −

∂
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The presence of a small parameter μ in the formula-
tion of problem (26), (27) makes it possible to use the 
asymptotic methods of perturbation theory [20–25] to 
solve it. In this case, the process of solving the problem 
consists of two stages, which alternate. If T is fixed 
in equations (1)–(3) of system (26), then the system 
of equations (1)–(3) together with the corresponding 
boundary conditions (27) forms singularly perturbed 
problems similar to the one considered in [10]. After sub-
stituting the solutions of the singularly perturbed prob-
lem (functions φ(x͂i, y͂j), n(x͂i, y͂j), p(x͂i, y͂j)) into the fourth 
equations of system (26) and invoking boundary condi-
tions (27), let’s obtain regularly perturbed problems for 
the heat equation ... In what follows, for convenience, the 
“~” symbol is omitted.

Based on the formulation of the singularly perturbed 
problem, let’s propose to seek solutions in the form of the 
following asymptotic series [22–24]:

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

ϕ
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=

ϕ = ϕ µ = Φ µ + Φ ξ µ +
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∑ ∑
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where Φ(m)(x, y, μ), N(m)(x, y, μ), P(m)(x, y, μ) – regular parts 
of the asymptotics; Φ̲(m)(ξ̲, μ), N̲(m)(ξ̲, μ), P̲(m)(ξ̲, μ), Φ̅(m)(ξ̅, μ), 
N̅(m)(ξ̅, μ), P̅(m)(ξ̅, μ) – boundary corrections of the asymp-
totics, respectively, in the neighborhoods of the points x=0,  
 x=1 ( ξ =

µ
,

x
 

−
ξ =

µ
1 x

 – regularizing dilations) are the re-

mainders. Note that when constructing series (28), let’s took 
into account the influence on the structure of solutions of the 
conditions on the contact sections (the neighborhood of the 
points x=0, x=1).

Let’s seek the solution of the heat conduction equation in 
the following form:

( ) ( ) ( )
=

= µ = µ + µ∑ ( ) ( )
0

, , , , , .
m

i
i T m

i

T T x y T x y R x y 	 (29)

At the first stage of solving (26), (27), let’s obtain, 
similarly to [10], solutions of the following sequence of 
problems:

( ) ( )

( ) ( )
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– LC*D*:
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– LC*C and LE*E :
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in the form of the principal terms of asymptotics (28), which 
make the main contribution to the solution of the problem.

At the second stage, let’s fing an approximate solution 
to the nonlinear heat equation. Substitution of (29) into 
the corresponding equations and boundary conditions (26), 
(27) makes it possible to obtain a sequence of boundary val-
ue problems for linear inhomogeneous differential equations 
of the form:

∆T(0)=0,	 (34)

at
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The boundary corrections are obtained by solving 
the following system of equations with the corresponding 
boundary conditions (equivalent to the components of prob-
lem (31)–(33)):
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where y – parameter of the function and is sequentially 
fixed for the corresponding chain of nodes in the parametric 
domain. Functions ΠN(x,y), ΠP(1–x,y) have the content of 
electric potential gradients. To determine the integration 
constants, along with the boundary conditions of prob-
lem (33), the following condition was used:

( ) ( )( )Π + Π − =∫
1

0

, 1 , d ,N Px y x y x U

reflecting the approximate equality of the electric potential 
drop in the active region of the voltage U applied to the 
structure contacts.

5. 4. Results of numerous experiments
A series of numerical experiments was carried out, in 

which the following initial data were used: e=16∙10-20 C, 
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Dn=35 cm2/s, Dp=25 cm2/s, αn=2∙105 cm/s, αp=105 cm/s, 
ni=1016 cm3, μ=6.25∙10-6, U=5 V, J=2∙105 A/cm2, ε=11, ε0=885× 
×10-14 F/m, kB=1.38∙10-23 J/K, T0=300 K, λ=130 W/(K∙m), 
k1=10 W/(cm2∙K), k2=5 W/(cm2∙K). Wedge-type injection 
contacts were considered. According to the symmetric sections 
CD and C*D*, the limits of the active region were described by 
the functions y=0.5(x(dw)/h+w) and y=–0.5(x(d–w)/h+w), 
where w=26 μm, h=8 μm, b=72 μm, d=30 μm. The simulation 
results are shown in Fig. 5–7.

The algorithm for solving the difference problem (22)–(25) 
is based on the alternate parametrization of the limit and inter-
nal nodes of the grid region G’, the conformal invariant λc using 
the ideas of the block iteration method [26, 28].

After executing the algorithm for reducing the physical 
domain of the problem to the canonical form, an iterative 
algorithm for solving the sequence of problems (30)–(35) 
is used. In this case, explicit difference schemes with a five-
point pattern of the “cross” type are used to approximate the 
Laplace operator. The calculations were carried out on a uni-
form rectangular grid of nodes 100×400. The Adams algo-

rithm was also used to solve systems of ordinary differential 
equations (36). It has been experimentally established that 
5 iterations are sufficient to stabilize the numerical values of 
the computational process.

6. Discussion of the results of applying asymptotic 
methods and conformal mappings in modeling the 

characteristics of electron-hole plasma

Nonlinear problem (1)–(12), which is formed on the 
basis of improving the classical diffusion-drift plasma 
model, posed in a region with curvilinear boundaries. 

As a result of applying asymp-
totic methods and conformal 
transformations, it is reduced to 
a sequence of linear problems 
(22)–(25), (30)–(35), which are 
solved numerically. The main 
feature of this technique is the 
possibility of using, and in some 
cases – explicit computational 
schemes that do not require sig-
nificant computer resources to 
obtain simulation results. Note 
that the problem is formulated 
in the hydrodynamic approxi-
mation.

Fig. 5, a illustrates the stationary distribution of plasma 
concentration in the active region of an integrated p-i-n-
structure with wedge-shaped contacts, obtained by solving 
problem (1)–(3), (8)–(11) using the ambipolar diffusion 
approximation [7]. Let’s obtain a similar result for the prin-
cipal terms of the regular parts of the corresponding asymp-
totic series (28) at the initial stage of solving problem (26), 
(27) by methods of perturbation theory. Fig. 5, b shows the 
distribution of the plasma concentration with allowance for 
boundary corrections.

The results of modeling the distribution of plasma con-
centration according to the classical and improved mathe-
matical models to a certain extent correlate with each other. 
Let’s note significant differences in the concentration of 
charge carriers in the contact zones. Here, the condition of 
the approximate equality of the electron and hole concentra-
tions, which is the basis for applying the ambipolar diffusion 
approach, is violated. The mean values of plasma concen-
tration also differ. With the above initial data, an almost 
twofold increase in concentration is observed in comparison 
with the data of the classical model: 4.94 versus 9.14 (in rel-
ative units). Fig. 6 displays the data for comparative analysis 
of the results of modeling the distribution of the concentra-
tion of electrons and holes.

The temperature distribution in the active region of 
the integrated p-i-n-structure obtained by solving prob-
lems (30)–(35) is shown in Fig. 7. The simulation results 
reflect the fact that the cooling of the system is mainly due 
to the removal of heat through the metal contacts. Plasma 
heating by ~50 °C leads to a slight increase in plasma con-
centration (from 9.14 to 9.21 in relative units). Note that a 
feature of the mathematical model used in the research is the 
proposed description of recombination heat sources based on 
phenomenological data on the effect of temperature on the 
semiconductor band gap.

Fig. 5. Distributions of the concentration of charge carriers in the electron-hole plasma of 
the active region: a – without boundary corrections; b – with boundary corrections

a b

Fig. 6. Comparison of the calculated distributions of the 
concentration of charge carriers in cross sections without 

boundary corrections (….) with boundary corrections at 
T=300 K ( ) with boundary corrections and taking into 
account heating T=350 K ( ); a – cross section in the 

plane x=0; b – cross section c plane y=0)

Fig. 7. Temperature field of the active region of the 
integrated p-i-n-structure
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The key role in calculating the distribution of heat sources 
is played by the functions of the electric potential gradient, 
which are determined through the corresponding approxi-
mations and corrections ΠN(x,y), ΠP(1–x,y). Regular compo-
nents of the potential gradient make an insignificant contri-
bution to the description of the strength of the electrostatic 
plasma field. The characteristic power dissipated in a single 
p-i-n diode is 0.01–0.1 W. The classical model based on the 
use of the self-consistent field approximation (local gradients 
of the regular component of the electric field are insignificant) 
does not provide the indicated level of the dissipated power.

Note that at the corner points C, D, C*, D* of the region, 
the smoothness of the obtained distribution function is vi-
olated, but this circumstance does not significantly affect 
the description of the state of the electron-hole plasma. It 
is known that similar problems are solved by introducing 
angular corrections into consideration [20].

The accumulated charge values obtained within the 
framework of the ambipolar diffusion approximation and ac-
cording to the refined mathematical model differ by 2–4 %. 
Such differences do not significantly affect the estimate of 
the value of the effective dielectric constant of the active 
region of the p-i-n-structure. And, as a consequence, on the 
assessment of the electrodynamic characteristics of switch-
ing systems. However, the decomposition of the nonlinear 
mathematical model was carried out by methods of pertur-
bation theory and conformal mappings:

– to simplify the algorithm for solving the original prob-
lem by “splitting” it;

– to detail the physical meaning of the processes in the 
system under study;

– to optimize contact zones.
Let’s hope that the proposed mathematical model and 

the proven methods of its analysis will become the basis for 
studying the behavior of integrated p-i-n-structures when 
switching powerful electromagnetic fields.

7. Conclusions

1. An improved mathematical model is proposed for 
predicting the stationary distribution of the concentration 
of electron-hole plasma in the active region of p-i-n-diodes 
with curvilinear boundaries under conditions of plasma 
heating as a result of the release of Joule heat and recombi-

nation energy of excess charge carriers in the volume of the 
active region. The choice of its components is reasoned. The 
model is represented as a nonlinear system of singularly and 
regularly perturbed boundary value problems for equations 
in accordance with the continuity of electron-hole currents, 
Poisson and heat conductivity with the corresponding 
boundary conditions.

2. The transformation of the physical domain of the 
problem to the canonical form is carried out by the method 
of conformal mappings. This ensures, to a certain extent, 
the universality of the developed algorithm for solving the 
problem.

3. The distributions of the concentration of electrons and 
holes in the active region of integrated p-i-n-structures with 
deepened contacts and the corresponding temperature field 
in the form of the corresponding asymptotic series in the 
small parameter of the problem are found, and the asymp-
totic series for the functions of the concentration of charge 
carriers and potential are proposed taking into account 
boundary corrections. This made it possible to reduce the 
nonlinear boundary value problem to a sequence of linear 
boundary value problems, which, in particular, include the 
traditional formulations. It is found that the near-edges and 
corrections make the main contribution to the distribution 
function of the electrostatic field of the electron-hole plasma. 
The analysis of the nonlinear mathematical model of plasma 
in the diffusion-drift thermal approximation makes it possi-
ble to detail the physical description of the processes in the 
system under study.

4. A number of numerical algorithms are built to visual-
ize the research results. They have been tested. A computer 
model of an integrated p-i-n-structure with deep contacts 
has been developed, which allows, with an appropriate set of 
input data, to evaluate the basic characteristics of switches 
and to carry out the procedure for optimizing the shape and 
size of the p-i-, n-i-junction zones.
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