Published February 22, 2021 | Version v1
Poster Open

Gyro-Kinematic Ages for around 30,000 Kepler Stars

  • 1. Columbia University, American Museum of Natural History
  • 2. American Museum of Natural History, Flatiron Institute, Columbia University
  • 3. American Museum of Natural History
  • 4. Flatiron Institute, American Museum of Natural History
  • 5. City University of New York, American Museum of Natural History


Estimating stellar ages is important for advancing our understanding of stellar and exoplanet evolution and investigating the history of the Milky Way. However, ages for low-mass stars are hard to infer as they evolve slowly on the main sequence. In addition, empirical dating methods are difficult to calibrate for low-mass stars as they are faint. In this work, we calculate ages for Kepler F, G, and crucially K and M dwarfs, using their rotation and kinematic properties. We apply the simple assumption that the velocity dispersion of stars increases over time and adopt an age--velocity--dispersion relation (AVR) to estimate average stellar ages for groupings of coeval stars. We calculate the vertical velocity dispersion of stars in bins of absolute magnitude, temperature, rotation period, and Rossby number and then convert velocity dispersion to kinematic age via an AVR. Using this method, we estimate gyro-kinematic ages for 29,949 Kepler stars with measured rotation periods. We are able to estimate ages for clusters and asteroseismic stars with an RMS of 1.22 Gyr and 0.26 Gyr respectively. 



Files (5.9 MB)

Name Size Download all
5.9 MB Preview Download