Published December 10, 2020 | Version v0.3
Dataset Open

Input dataset for gap filling and land-cover mapping using eumap Library - 2000 to 2020

  • 1. OpenGeoHub Foundation
  • 2. MultiOne
  • 3. Czech Technical University in Prague
  • 4. Charles University in Prague

Description

Benchmark dataset containing slope, elevation, Landsat temporal composites and night light raster layers, and the training samples (LUCAS and CORINE samples compilation) to map the land-cover in different areas of the European Union-EU.

The slope and elevation refers to Digital Terrain Model for Continental Europe, and the night light images are from VNP46A1 product (VIIRS/NPP Daily Gridded Day Night Band 500m). The temporal composites were based on GLAD Landsat ARD, considering the 4 seasons and 3 percentiles per season (25, 50 and 75), for 6 spectral (blue, green, red, NIR, SWIR1, SWIR2) and 1 thermal band, resulting at end in 88 Landsat composites per year. The images for each season were selected using the same calendar dates for all period:

  • Winter: December 2 of previous year until March 20 of current year
  • Spring: March 21 until June 24 of current year
  • Summer: June 25 until September 12 of current year
  • Fall: September 13 until December 1 of current year

The temporal composites were generated to Sentinel-2 L2A for 2018, 2019 and 2020, using the same approach (4 seasons x 3 percentiles x 6 spectral bands).

The benchmark areas were selected according to the EU tiling system, which consists of 7,042 regular tiles with 30 x 30 km. The dataset uses the ETRS89-extended / LAEA Europe as spatial reference system (EPSG:3035), and all the raster layers have 1,000 x 1,000 pixels and 30m of spatial resolution.

For all the EU the training samples will have 32 land-cover classes, varying according to the benchmark area:

  • 111: Urban fabric
  • 122: Road and rail networks and associated land
  • 123: Port areas
  • 124: Airports
  • 131: Mineral extraction sites
  • 132: Dump sites
  • 133: Construction sites
  • 141: Green urban areas
  • 211: Non-irrigated arable land
  • 212: Permanently irrigated arable land
  • 213: Rice fields
  • 221: Vineyards
  • 222: Fruit trees and berry plantations
  • 223: Olive groves
  • 231: Pastures
  • 311: Broad-leaved forest
  • 312: Coniferous forest
  • 321: Natural grasslands
  • 322: Moors and heathland
  • 323: Sclerophyllous vegetation
  • 324: Transitional woodland-shrub
  • 331: Beaches, dunes, sands
  • 332: Bare rocks
  • 333: Sparsely vegetated areas
  • 334: Burnt areas
  • 335: Glaciers and perpetual snow
  • 411: Inland wetlands
  • 421: Maritime wetlands
  • 511: Water courses
  • 512: Water bodies
  • 521: Coastal lagoons
  • 522: Estuaries
  • 523: Sea and ocean

The gap filling validation data was generated by creating a mask of all nodata pixels (gaps) for each temporal composite, and then transposing that mask. All valid pixels covered by the transposed nodata mask are considered validation pixels. This method was chosen to retain the diversity of spatiotemporal nodata patterns that occur in the data. Each gap filling validation file contains 3 directory:

  • raw: original temporal composite
  • validation: transposed data
  • filled_tmwm8: the best gap filling method that was tested

See the eumap library for more information about the gapfiling approach and land-cover mapping using this dataset.

Notes

This work has received funding from the European Union's the Innovation and Networks Executive Agency (INEA) under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

benchmark_tiles.png

Files (49.9 GB)

Name Size Download all
md5:c8f7b2408ee24f009f6f7d0df57a1840
401.4 kB Download
md5:203894daf592691fa51a1dccd563e2f2
1.2 GB Download
md5:9a687b6f41fc681161e4582c1af67c44
1.2 GB Download
md5:0a13a8400eb38843afb9a0b613eb7bc6
282.6 kB Download
md5:fc0960d6008533aa13ada7ccdcb09801
662.3 MB Download
md5:60ccf2dd556a1b8d644e9638616f4c1b
664.5 MB Download
md5:54762fd9fdc5ebeb6491efd53768a1f1
352.3 kB Download
md5:267f6dd987234b1ca0938f7e9d23bb09
1.1 GB Download
md5:6209ad76a9da506c30d09cf5a852b349
883.3 MB Download
md5:8e538038a6e494b28de61ea218f9f2c2
340.0 kB Download
md5:6f658086339abc9c0c658c98aa07eafd
973.6 MB Download
md5:a18c94179dbd890ad458b534814ee4d0
860.2 MB Download
md5:24dafe26653044b3387d28b95d9c2859
340.0 kB Download
md5:0810d0bf2de55a6c4fed355a8a4b6a8b
1.0 GB Download
md5:9e453fcd704416ad51a2d81147c4a321
886.4 MB Download
md5:63d91c8361e4abc87c5118d54e5eaaae
364.5 kB Download
md5:59979be83ffadf0c31c397d276f25e54
920.8 MB Download
md5:61b1d972df0391ac94881a8503a9b6bf
803.3 MB Download
md5:21f5f4d35889198a9f613b982e574d15
376.8 kB Download
md5:89002421fc4ac45f96a042d5965fc38f
1.2 GB Download
md5:0505b591a93564a40c06078f16ec3a43
934.9 MB Download
md5:c2758f5ba0b7c8a75774386e6b3fcd66
311.3 kB Download
md5:811f8a7fd8e5430935d241c8480add13
1.4 GB Download
md5:a4586b7a5a77204950ec1b07ae21d69a
1.0 GB Download
md5:1b438e44bdf83e4aaffac83f72cafee0
356.4 kB Download
md5:b6c55bcbe2f6888186661505df0d1aeb
1.3 GB Download
md5:16ad8ab43262eb18dd48ab2e0f5e57cd
921.4 MB Download
md5:59671ae1a19d11c323113257dac9e844
315.4 kB Download
md5:2359eba1246dcac8723cfbe1de1a7d0f
1.1 GB Download
md5:05fb23ab5923d4373791cb8fa6b5759e
841.6 MB Download
md5:4950bcb3e5314c5937ceaa81817084c6
1.0 MB Preview Download
md5:65306d9b3d1ed00eb628b31fc9f24523
2.7 GB Download
md5:db43162ffa8650380cc7e6d7d7142fd0
1.7 MB Download
md5:4294ab31b9da7f0043a566f332e04dee
3.4 GB Download
md5:617ee48e400051108e5dcaf11121e688
2.7 GB Download
md5:ed42622a30599b313fa1c4f953d2f4f5
3.4 GB Download
md5:5c310b62fc2851fa65f7c2859b328af3
2.2 GB Download
md5:9448e9e1a0b601b50ea4f648efa15b89
3.0 GB Download
md5:575296d9ce430aaa1f7a226a643c527c
2.8 GB Download
md5:8a9d30154a75fb9fc40b57bda4dd9c48
3.4 GB Download
md5:d7a2fe4dbc06bafc4b10b83ff5c6d5db
2.4 GB Download
md5:2c3a0a2861e6287b22db167cf521792e
3.9 GB Download

Additional details

Related works

Cites
Dataset: 10.5281/zenodo.4724549 (DOI)
Dataset: 10.5281/zenodo.4725429 (DOI)
Dataset: 10.5281/zenodo.4740691 (DOI)