There is a newer version of the record available.

Published August 29, 2025 | Version v1
Preprint Open

Modal–Liouville Strings in 3+1: Worldsheet Consistency, SM Spectrum and a Single Vacuum

Description

We construct a non–critical string theory directly in 3+1 dimensions. The worldsheet conformal anomaly is cancelled by a physical Modal–Liouville compensator Phi_modal with a clean dictionary to Manifold Quantum Gravity (MQG). The internal sector is a rational chiral algebra A_modal that realises the Standard Model gauge algebra and chiral matter without extra dimensions or Calabi–Yau moduli. We establish worldsheet consistency (central charge balance, vanishing β–functions on MQG on–shell backgrounds, BRST nilpotency, modular invariance), construct gauge and matter via simple–current RCFT, derive the 4D effective action with α′ₘ = Γc⁻¹, show that continuous moduli are lifted, prove a finite one–loop vacuum set further pruned by Γ–stability, and exhibit standard open–string gauge amplitudes with Regge behaviour and a Yang–Mills limit. The apparent landscape collapses to a single vacuum consistent with the Standard Model, uniquely correlated with a recursion depth in MQG. The framework is falsifiable: it predicts no light geometric moduli and only near–equilibrium supersymmetry.

Files

Modal_Liouville_Strings_in_3_1-v1.2.pdf

Files (788.2 kB)

Name Size Download all
md5:5d71b0c542a840133687cf9b84b40ecc
665.1 kB Preview Download
md5:3a5f57e601e08e1e8769e67176701068
123.1 kB Download

Additional details

Related works

Continues
Preprint: 10.5281/zenodo.16374596 (DOI)
Preprint: 10.5281/zenodo.16971597 (DOI)

Dates

Created
2025-08-29
Preprint

References

  • 1 L. Susskind, "Structure of Hadrons Implied by Duality," Phys. Rev. D 1, 1182–1186 (1970). 2 L. Susskind, "The World as a Hologram," J. Math. Phys. 36, 6377–6396 (1995). 3 C. G. Callan, D. Friedan, E. J. Martinec, and M. J. Perry, "Strings in Background Fields," Nucl. Phys. B 262, 593–609 (1985). 4 E. S. Fradkin and A. A. Tseytlin, "Effective Field Theory from Quantized Strings," Phys. Lett. B 158, 316–322 (1985). 5 A. M. Polyakov, "Quantum Geometry of Bosonic Strings," Phys. Lett. B 103, 207–210 (1981). 6 V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, "Fractal Structure of 2D Quantum Gravity," Mod. Phys. Lett. A 3, 819–826 (1988). 7 F. David, "Conformal Field Theories Coupled to 2D Gravity in the Con- formal Gauge," Mod. Phys. Lett. A 3, 1651–1656 (1988). 8 J. Distler and H. Kawai, "Conformal Field Theory and 2D Quantum Gravity or Who's Afraid of Joseph Liouville?" Nucl. Phys. B 321, 509–527 (1989). 9 J. Teschner, "Liouville Theory Revisited," Class. Quant. Grav. 18, R153–R222 (2001). 10 P. Goddard and C. B. Thorn, "Compatibility of the Dual Pomeron with Unitarity and the Absence of Ghosts in the Dual Resonance Model," Phys. Lett. B 40, 235–238 (1972). 11 J. Polchinski, String Theory, Vol. 1, Cambridge University Press (1998). 12 J. Polchinski, String Theory, Vol. 2, Cambridge University Press (1998). 13 D. Friedan, E. Martinec, and S. Shenker, "Conformal Invariance, Su- persymmetry and String Theory," Nucl. Phys. B 271, 93–165 (1986). 14 N. Seiberg, "Notes on Quantum Liouville Theory and Quantum Grav- ity," Prog. Theor. Phys. Suppl. 102, 319–349 (1990). 15 P. Ginsparg, "Applied Conformal Field Theory," Les Houches 1988 (Fields, Strings and Critical Phenomena). 16 P. Goddard and D. Olive, "Kac–Moody and Virasoro Algebras in Re- lation to Quantum Physics," Int. J. Mod. Phys. A 1, 303–414 (1986). 17 L. Dixon, D. Friedan, E. Martinec, and S. Shenker, "The Conformal Field Theory of Orbifolds," Nucl. Phys. B 282, 13–73 (1987). 18 A. Schellekens and S. Yankielowicz, "Simple Currents, Modular Invari- ants and Fixed Points," Int. J. Mod. Phys. A 5, 2903–2952 (1990). 19 J. D. Coulson, "Manifold Quantum Gravity: From First Principles to Cosmic Phenomena," Zenodo Preprint (2025). DOI: 10.5281/zen- odo.16214915. 20 J. D. Coulson, "Emergence of the Gauge Sector in Manifold Quantum Gravity," Zenodo Preprint (2025). DOI: 10.5281/zenodo.16374596. 21 P. Goddard, A. Kent, and D. Olive, "Virasoro Algebras and Coset Space Models," Phys. Lett. B 152, 88–92 (1985). 22 V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univer- sity Press (1990). 23 A. N. Schellekens and S. Yankielowicz, "Extended Chiral Algebras and Modular Invariant Partition Functions," Nucl. Phys. B 327, 673–703 (1989). 24 A. N. Schellekens and S. Yankielowicz, "Simple Currents, Modular In- variants and Fixed Points," Int. J. Mod. Phys. A 5, 2903–2952 (1990). 25 L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, "Strings on Orbifolds," Nucl. Phys. B 261, 678–686 (1985). 26 I. Antoniadis, C. Bachas, and C. Kounnas, "Four-Dimensional Super- strings," Nucl. Phys. B 289, 87–108 (1987). 27 A. B. Zamolodchikov, "Irreversibility of the Flux of the Renormaliza- tion Group in a 2D Field Theory," JETP Lett. 43, 730–732 (1986). 28 G. Veneziano, "Construction of a Crossing-Symmetric, Regge-Behaved Amplitude for Linearly Rising Trajectories," Nuovo Cim. A 57, 190–197 (1968). 29 Z. Koba and H. B. Nielsen, "Manifestly Crossing-Invariant Parametriza- tion of Dual Amplitudes," Nucl. Phys. B 10, 633–655 (1969). 30 M. A. Virasoro and G. Shapiro, "Dual Models for Non-Hadrons," Phys. Rev. D1, 2933–2936 (1970). 31 M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol. 1, Cambridge University Press (1987). 32 T. H. Buscher, "A Symmetry of the String Background Field Equa- tions," Phys. Lett. B 194, 59–62 (1987). 33 T. H. Buscher, "Path-Integral Derivation of Quantum Duality in Non- linear Sigma-Models," Phys. Lett. B 201, 466–472 (1988).