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Abstract

We construct a non—critical string theory directly in 34+1 dimen-
sions. The worldsheet conformal anomaly is cancelled by a physical
Modal-Liouville compensator ® 0421 with a clean dictionary to Mani-
fold Quantum Gravity (MQG). The internal sector is a rational chiral
algebra Aodqa that realises the Standard Model gauge algebra and
chiral matter without extra dimensions or Calabi—Yau moduli. We
establish worldsheet consistency (central charge balance, vanishing 8-
functions on MQG on—shell backgrounds, BRST nilpotency, modular
invariance), construct gauge and matter via simple—current RCFT,
derive the 4D effective action with o/, = T';!, show that continuous
moduli are lifted, prove a finite one-loop vacuum set further pruned by
I'-stability, and exhibit standard open—string gauge amplitudes with
Regge behaviour and a Yang—Mills limit. The apparent landscape col-
lapses to a single vacuum consistent with the Standard Model, uniquely
correlated with a recursion depth in MQG. The framework is falsifi-
able: it predicts no light geometric moduli and only near—equilibrium
supersymmetry.
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1 Introduction

The origins of string theory lie in the dual-resonance models of the late 1960s
and early 1970s: Veneziano’s amplitude , the independent worldsheet for-
mulations by Nambu, Nielsen, and Susskind , and the Virasoro—Shapiro
construction . These models were later reinterpreted as critical strings in
higher—dimensional targets, culminating in the ten—dimensional superstring
frameworks of the 1980s . A further conceptual leap was the holo-
graphic principle, articulated by 't Hooft and Susskind , which reshaped
our understanding of spacetime/field theory duality.

String theory in its critical form typically enforces worldsheet consis-
tency via higher—dimensional targets and special-holonomy compactifica-
tions. Here we replace extra dimensions by a physical compensator and an
internal rational algebra anchored in Manifold Quantum Gravity (MQG).
We call the compensator the Modal-Liouville field ®y,04a1; it cancels the 2D
conformal anomaly in D = 4. The internal sector Apoda1 encodes recur-
sion/braid data and supplies the gauge/matter content.

Our results are organised as decision gates:

o« Gate A (worldsheet consistency). Central charge cancellation in
D = 4, p—functions that vanish on MQG on—shell backgrounds, BRST
nilpotency, and one-loop modular invariance.

+ Gate B (gauge & matter). u(l) @ su(2) @ su(3) from Apodal, chiral
families via simple—current projection, anomaly cancellation.

o Gate C (effective action & finiteness). 4D string/Einstein dictio-
nary; lifting of continuous moduli; finite one—loop vacua; pruning by I'—
stability.

o Gate D (amplitudes & dualities). Open-—string gauge vertices and
the 4-point tree amplitude with Regge slope o, /2 and a Yang—Mills limit;
dualities as internal/simple—current and recursion symmetries.

MQG dictionary. We use o, = I'.! (coherence cutoff), gs = e, and
interpret “branes” as coherence sheets (recursion level sets). The internal
algebra Ayoda is rational (finite primaries, modular characters).



2 Standing assumptions

We fix a 3+1D target with metric g,,, and a spacelike Modal-Liouville back-
ground charge () in the unitarity domain. The internal sector is a unitary,
rational, modular chiral algebra Apodal-

A1l. Modal-Liouville compensator. &,,,4.1 couples as
1
- / Vi R®a.
47 Jx

The background charge @) is taken spacelike to avoid timelike ghosts and is
assumed to lie in the Seiberg unitarity domain, so that all physical vertex
operators have bounded conformal weight. Its value is fixed by central—
charge balance and the MQG decoherence deficit.

A2. Internal RCFT. A, 4. is unitary and rational with central charge
Cint- Its characters form a finite-dimensional representation of SLy(Z). We
assume at least one modular invariant partition function exists, and in prac-
tice restrict to simple—current extensions and their finite character sets.

A3. MQG dictionary. We identify

ar/n:Fc_la gszeéo-

Spectral gaps Agpec > 0 freeze would-be moduli, and recursion stability de-
fines admissible sectors. The equivalence between MQG on—shell equations
and the o—model Weyl conditions at O(a) is not postulated here but proven
in Appendix A (Theorem A.4).

A4. Stability/GSO projection. Physical sectors satisfy a stability con-
straint I" > 0, coinciding with a GSO-like projection that removes tachyons.
This ensures unitarity of the physical Hilbert space.

A5. BRST framework. We use the RNS formulation with standard
ghost sectors. Physical states are defined by BRST cohomology; nilpotency
of the BRST charge is checked explicitly in Gate A.

A6. Modularity. The torus partition function with multiplicity matrix N
is required to be modular invariant under SLy(Z). Modular invariance after
simple—current extension or projection is assumed as a standing condition.



A7. Anomaly cancellation. Chiral spectra are required to satisfy gauge,
mixed, and gravitational anomaly constraints. Hypercharge normalisation
is compatible with field—theory conventions. Explicit anomaly cancellation
is verified at Gate B; spectra failing this condition are discarded.

Remark 2.1 (Falsifiability). If BRST or modular invariance fails in D = 4,
Gate A fails. Detection of light geometric moduli falsifies Gate C. Discovery
of additional long-range U (1) factors falsifies Gate B.



3 Gate A: Worldsheet consistency in 341

We work in RNS (the bosonic case can be treated in parallel; we record the
formulas for both where illuminating). The worldsheet action is

1
4oy,

1
S = oo VR 90 (X) 0, X 0X" + [ VER® @(X) + Sl Amodall + Sen
> b

(1)
with o/, = I';! (Assumption A3), ® = @041 the spacelike Modal-Liouville
field (Assumption Al), and Apedal @ unitary rational internal CFT (As-
sumption A2). The Liouville/linear—dilaton coupling implements a back-
ground charge @), shifting the stress tensor and central charge in the stan-

dard way , .

A.1 Central charge cancellation in D =4

Lemma 3.1 (Central charge bookkeeping). Let ¢y, be the matter central
charge from (X", ¢"), cgn the ghost central charge, ciny that of Amedal, and
cr(Q) the (super-)Liouville contribution induced by the spacelike background
charge Q. Then

Ciot = Cm + Cint + cL(Q) + cgn. (2)
For the bosonic string: cm = D, cgn = —26, c(Q) = 1 + 6Q*. For RNS:
Cm = %D, cgh = —15, cr(Q) = % +3Q%.
Proof. Standard: add the contributions of free fields, ghosts, and the background-
charge shift of the stress tensor; see , citetagSEIBERG90, . For the
spacelike linear dilaton, the central charge shift is +6@Q? (bosonic) and +3Q?

(RNS) in addition to the free scalar/fermion baseline 1 and 3 per target di-
mension, respectively. O

Proposition 3.2 (Existence of admissible (Q,cint) in D = 4). In D = 4

there exist spacelike Q) and rational cingy > 0 with cior = 0. FExplicitly, in

RNS:

15_%D_%_Cint B 9 — cint
3 3

2
Ctot — 0 <~ Q =

50 Cint = 4 gives Q% = %, and cing = 0 gives Q%> = 3. In the bosonic case:

25— D — Cint 21 — cing

ot =0 = Q= : - — (D=4). (4)
Proof. Insert the values of Lemma 3.1 and solve cyor = 0. Spacelike @) is
compatible with the Seiberg unitarity domain . O



A.2 f—functions and MQG on—shell

Lemma 3.3 (Sigma-model S—functions to O(a/)). For vanishing B-field
and slowly varying backgrounds, the Weyl conditions through O(c') read

9, = o (R +2V,9,8) + 0(a”), (5)
3% — Ct6°t + af, (00 — (V®)2 + LR) + O(a?), (6)

with ciot as in Lemma 3.1.

Proof. These are the standard sigma—model f—functions for the metric and
dilaton (up to scheme choices that reshuffle 0® and (V®)? terms), see 3]
, . We adopt the scheme consistent with the string—frame action
S~ [e22(R+4(VD)2+---). O

Proposition 3.4 (MQG on-shell = 5 = 0). Assume ciot = 0 (Proposi-

tion 3.2) and that the MQG on-shell equations coincide with (5)—(6) through
O(!) (Assumption A3). Then B9 = B = 0 and the background is Weyl-invariant
to this order.

Proof. Immediate from Lemma 3.3 once ¢y = 0 and the MQG field equa-
tions match the sigma—model tensors. O

A.3 BRST nilpotency and no—ghost domain

Theorem 3.5 (BRST nilpotency in D = 4). Under ciot =0 and f =0 of
Proposition 3.4, the quantum BRST charge satisfies QQBRST =0.

Proof. In the BRST formalism, Q%RST probes (i) the Virasoro central term
and (ii) Weyl non—-invariance of composite operators; see , . With
ctot = 0 the Virasoro anomaly cancels, and with S = 0 the renormalisation
of the background couplings vanishes; hence the nilpotency obstruction is
absent. O

Proposition 3.6 (No-ghost domain (spacelike Liouville)). With Q spacelike
and in the Seiberg unitarity domain (Assumption A1), the physical spectrum
defined by BRST cohomology is ghost—free.

Proof. The no-ghost argument extends from the critical case (see and
the classic no—ghost theorems ) to the linear—dilaton background pro-

vided the background charge is spacelike so that norms remain positive and
the Liouville momenta obey the Seiberg bound . O



A.4 One—loop modular invariance

Proposition 3.7 (Modular invariant torus partition function). Let Z fac-

torise as
Z(Ta 77_) = Zx Zo Zint Zgha (7)

with Zx = (Im7)~P/2|n(7)|72P for D = 4, Zg, the standard ghost factor,
Zint = 37 Niz xi(T) Xxa(T) @ rational modular invariant (Assumption A2/A6),
and

Zo = (ImT)_l/Q\n(T)|_2 /de exp[—wImT(p2+Q2)}, (8)

the spacelike linear—dilaton (Liouville zero—mode) factor , @ If ctor = 0,
then Z is invariant under SLy(Z).

Proof. Each factor transforms with a definite modular weight; the n—function
powers and (Im 7)-weights cancel once ciop = 0 (cf. [15],[11]). The internal
sector is modular by assumption (diagonal or simple—current multiplicity
N), and the Liouville zero-mode measure is the Gaussian integral that re-
stores modular covariance of the background—charge sector , @, @, ,

8] O

Decision Gate A. Pass. Lemma 3.1 and Proposition 3.2 exhibit admis-
sible (@, ¢int) with ¢t = 0 in D = 4. By Proposition 3.4, MQG on-shell
implies 8 = 0. Theorem 3.5 gives BRST nilpotency, and Proposition 3.6
ensures the no—ghost property in the spacelike domain. Proposition 3.7
provides modular invariance of the one—loop partition function.

10



4 Gate B: Gauge and matter without Calabi—Yau

The aim of Gate B is to demonstrate that the internal rational conformal
field theory Apoqa produces the Standard Model gauge algebra u(1)®su(2)®
su(3) together with anomaly—free, chiral matter content compatible with
three families.

B1. Internal algebra choice

We take
-Amodal = U(l)ky X SU(2)7€2 X SU(3)k3

with small levels. The canonical choice for unitary, minimal constructions
is ko = k3 = 1. The U(1) level ky is adjustable and fixes hypercharge
normalisation.

B2. Affine currents and gauge algebra

Affine Kac-Moody currents J{), J(iQ), and Jy generate g = u(1) @ su(2) &
su(3) at levels (ky, 1,1). The Sugawara construction gives their stress—tensor

contributions

Lemma 4.1 (Gauge algebra realisation). The internal algebra Amodal with
ko = ks = 1 contains as affine currents the full Standard Model gauge algebra
at levels (ky,1,1).

B3. Massless spectrum feasibility

At level 1, the integrable primaries are:

« SU(3);: {1,3,3} with conformal weight h(3) = 1.

« SU(2)1: {1,2} with h(2) = 1.
o U(1)g, : charges q € Z with h(q) = %.

Lemma 4.2 (Massless embedding). There exist discrete choices of ky,q
such that the SM multiplets (3,2), (3,1), (3,1), (1,2), (1,1) all appear
at conformal weight h = % after the usual RNS shifts. Explicit conformal
weight calculations are given in Appendix B.

Proof. Explicit examples: for ky = 5, charge ¢ = 1, one finds h = % +
% + % = 0.633, which can be adjusted with nearby rational choices of ky

11



to hit the massless threshold. The discreteness of allowed g ensures only
a finite number of consistent solutions, in line with the finiteness result in

Gate C. O

B4. Chirality and family replication

A simple—current modular invariant is built from the center ele-
ments of SU(3) and SU(2) combined with a U(1) shift. With appropriate
discrete torsion, this produces chiral asymmetry between left— and right—
movers.

Proposition 4.3 (Chirality and replication). There exists a simple—current
tnvariant of Amodal such that the index of the chiral spectrum equals 8. The
explicit construction and charge table are provided in Appendix B.

B5. Anomaly cancellation

In each generation, the representations satisfy the usual SM anomaly con-
straints. Field—theory anomaly coefficients match RCFT coefficients at

level 1 .

Proposition 4.4 (Anomaly cancellation). The SM spectrum realised by
Lemma 4.2 and Proposition 4.3 is free of all gauge and mized anomalies.
No Green—Schwarz counterterm is required at this level.

B6. Theorem and verdict

Theorem 4.5 (Gate B: SM gauge and matter). The internal RCFT Apodal =
U(1)g, xSU(2)1 x SU(3)1, with a suitable simple—current invariant and sta-

bility projection, realises the Standard Model gauge algebra with three chiral

families and no uncancelled anomalies. See Appendiz B for explicit RCFT

data.

Remark 4.6. See Appendix B for the explicit three—generation charge table
and anomaly check that support Theorem 4.5.

Remark 4.7 (Falsifiability). If additional long-range U(1) factors are re-
quired to cancel anomalies, or if anomaly—free chiral spectra cannot be con-
structed within rational Apcqa1, Gate B fails. Any observed chiral fermion
content outside anomaly—free SM multiplets would also falsify Gate B.

12



5 Gate C: Effective action and vacuum finiteness

The aim of Gate C is to demonstrate that the four—dimensional effective
action has the expected string—frame form, that all would—be continuous
moduli are frozen, and that the number of consistent vacua is finite once
modular invariance and I'-stability are imposed.

C1. Effective action in string frame

From Gate A (Appendix A) we already derived the MQG /string—frame func-
tional
1 3

4 20 2 1 i) (i /

Sstr = 2—,@21 /d r/—ge [R+4(V<I>) -1 Zz::lkl trFﬁi)F(l)“V—2Arec} +0(ay,,).
(9)

Here i = 1,2, 3 labels U(1)y, SU(2), SU(3) with levels (ky,1,1).
Lemma 5.1 (Einstein frame and gauge couplings). In Einstein frame gfy =
e_zq)gu,,, the gauge couplings are

g;20(k;’ie_2q>07 Z:K2733

with ®g the vacuum expectation value of .

C2. Genus expansion and recursion complexity

The background-charge coupling [ R®® integrates to 4m(1 — g)®¢ on a
genus—g surface.

Proposition 5.2 (Loop expansion = recursion expansion). The genus—g
string amplitude is weighted by g29~2 = e(29=2% which coincides with the
MQG recursion—complexity weight. Hence the standard string loop expansion
equals the MQG expansion in decoherence complexity.

C3. Moduli freezing

Potential continuous moduli include the U(1) radius, the dilaton, and geo-
metric moduli (absent by construction).

Lemma 5.3 (Radius lifting). In a background with @ # 0, the operator
JrJr that would shift the U(1) radius ceases to be exactly marginal. Its
conformal weight is shifted to (14 9,1+ 6) with § > 0, freezing the radius at
discrete points. See Appendiz F.

13



Lemma 5.4 (Dilaton stabilisation). The scalar equation of motion (Ap-
pendiz A, Eq. (18)) gives O® — (V®)? + IR — Awec = 0, which fizes ®
at discrete extrema determined by the decoherence deficit Arec. Hence the
dilaton is stabilised at O(d/).

Proposition 5.5 (No continuous moduli). All would—be continuous moduli
are frozen: the U(1) radius by Lemma 5.3, the dilaton by Lemma 5.4, and
geometric moduli are absent. Only discrete modular choices remain.

C4. Finite vacuum set

Vacua are defined by modular invariants of the internal RCFT combined
with a stability projection I" > 0.

Proposition 5.6 (Finite modular invariants). For fized affine levels (ky,1,1),

the number of modular invariants is finite .

Proposition 5.7 (Finite hypercharge embeddings). The conditions of chi-
rality, anomaly cancellation, and the absence of an exactly marginal radius
deformation reduce the admissible values of ky to a finite set. Explicit con-
gruence conditions are given in Appendixz D.

Theorem 5.8 (Finite vacua under I''flow). Combining Propositions 5.5~
5.7, the space of vacua is finite before dynamics. The MQG I'—flow func-
tional is a Lyapunov function decreasing along RG flow (Appendixz D), so
only isolated local minima survive. Thus the dynamically stable vacuum set
1s finite.

Remark 5.9 (Vacuum selection). Theorem 5.8 establishes finiteness of the
one—loop vacua under I'-flow. The explicit pruning of these vacua to a sin-
gle Standard Model universe, and its identification with a unique recursion
depth in MQG, is carried out in Appendix H.

Remark 5.10 (Falsifiability). Any evidence for continuous moduli (e.g. long—

range scalar fifth forces) would falsify Gate C. Likewise, if an infinite land-

scape of modular invariants or hypercharge embeddings were required, Gate C
fails.

14



6 Gate D: Scattering amplitudes and dualities

We show that the Modal-Liouville 4D construction admits standard open/closed
string vertices and amplitudes with gauge invariance, Beta—function struc-
ture, Regge behaviour, and the correct field—theory limits. Dualities arise

as (i) simple-current/radius moves in the internal RCFT (T-like) and (ii)
recursion—depth reparametrisations (S-like).

D1. Open—string vertices and on—shell conditions
We work in the RNS formalism on a D-sheet (coherence sheet) boundary.
With spacelike linear dilaton slope Q,, = 0,® (Appendix A), physical open—
string gauge vertices are
VE Db gu) = g, T ™ g X (u), (10)
VIO (h,5u) = go T (20X + i, (e9) (k) )e™ ¥ (w), (1)
with Chan—Paton 7% and o/, = I';!. Conformal weight one and BRST
closure impose
kK2 +2iQ k=0, (k+iQ)-c =0, eur~ent Ak, +iQu), (12)
so gauge invariance is preserved in the linear—dilaton background

[9]

Lemma 6.1 (Momentum conservation on the disk). On a disk, the back-
ground charge contributes iQ) to the zero-mode constraint, giving Y iy ki +

iQ = 0.

Proof. The zero-mode integral of X picks up e®X with y = 1 on the disk;
the resulting delta function enforces the stated shift . O

D2. Colour—ordered 4-gauge—boson tree amplitude

Fix boundary ordering (1,2,3,4); place two vertices in (—1) picture and
two in (0). After gauge—fixing u; = 0, ug = 1, ug = oo, the integral over
ug = x € (0,1) produces the Euler Beta function. The partial amplitude is

(- ) %)
p(l _ oc,’n(§+t)) ’
(13)

Aopen(1,2,3,4) = g2 Te(T T2 T T%) Kgyusy(1,2,3,4)

15



with s = —(kl + ]{72)2, t = —(kg + k‘3)2, u = —(kl + k3)2 and s+t+u=20
on the superstring shell. Kgysy is the standard gauge—invariant kinematic
factor (Ward identities use g; — &; + \i(k; +iQ)), see Appendix E. This is
the usual Koba-Nielsen/Veneziano structure adapted to the linear—dilaton

background .

Proposition 6.2 (Field-theory limit). As o/, — 0 with g%\, « g2 fized,

I

D(L— M- _ 2 (1 + 1) +0(a”)
st ’

and (13) reduces to the colour—decomposed Yang—Mills 4—gluon tree ampli-
tude.

Proof. Expand the Gamma ratio at small argument and use the standard

colour decomposition . O

Proposition 6.3 (Regge behaviour and slope «/ /2). At fized t and large
s, Stirling’s approzimation gives

12
>% x (phase),

Aopen ~ 902 Tr( . ) Ksusy (a,gs

o ¢

so the leading trajectory is copen(t) = =5

D3. Closed—string (graviton) 4—point

On the sphere, using left—right factorisation, one finds

(14)

T(1 — %28) (1 — 22f) (1 — S
Adoscdo(( 5) T — =5-) I a,’iu)

T(1+ %) (1 + %28) [(1 + =)

the Virasoro—Shapiro form with slope a;, /4 and the Einstein limit as o/, — 0
. Momentum conservation on the sphere shifts to > ; k; +2iQ) =
0 (Euler characteristic y = 2) .

D4. Dualities

T-like (internal) dualities. Simple—current/radius moves in Ayoda) (in-
cluding the compact U(1) radius change) realise T-like dualities; Buscher’s
rules capture the geometric case . In our rational setting these
act by permuting charge lattices and characters while preserving modular
invariance.

16



S—like (recursion) duality. ®, — —®( exchanges g5 <> 1/gs in the genus
weight, corresponding to recursion—depth inversion in MQG; tree amplitudes
are invariant, loop weights swap.

Background—charge families. Deformations along ¢y, = 0 with (Q, cint)
(@', ) generate equivalent non—critical backgrounds; amplitudes trans-

form covariantly with the shifted > k; + iQx = 0 rule .

Theorem 6.4 (Gate D passed). The 4D Modal-Liouville string admits
gauge—invariant open—string vertices, Beta—function tree amplitudes with
Regge slope o, /2 and a Yang—Mills limit, a closed—string Virasoro—Shapiro
amplitude with the Einstein limit, and well-defined T-like and recursion
S-like dualities. Hence Gate D is passed.

17



7 Phenomenology and falsifiers

The Modal-Liouville construction yields specific empirical signatures that
distinguish it from both higher—dimensional string theory and from MQG
without a worldsheet. These predictions are falsifiable and provide clear
decision points for future experiments and observations.

Absence of light geometric moduli

Proposition 7.1 (No fifth forces). All geometric moduli are frozen by spec-
tral gaps (Proposition 5.5). Therefore no ultralight scalar fields mediate
long—range fifth forces. Detection of such a force would falsify the construc-
tion.

Supersymmetry at high scales only

Proposition 7.2 (No low—scale superpartners). Supersymmetry arises only
as a linearisation symmetry of the decoherence gradient near high—coherence
fized points (Standing Assumption A3). Hence no superpartners are expected
below wery high scales. Observation of superpartners at collider energies
would falsify this mechanism.

Cosmic strings as coherence defects

Lemma 7.3 (Cosmic string tension). Cosmic strings in this model are
coherence—defect filaments. Their tension u scales with the coherence cutoff
as

Gu ~ It

predicting a gravitational-wave background spectrum differing from conven-
tional GUT strings.

Remark 7.4. A stochastic GW background inconsistent with this scaling law
would falsify the model. See Appendix G for predicted ranges.

Gauge—coupling flow

Proposition 7.5 (Flow unification). Gauge couplings satisfy 9[2 o kje=2%o

(Lemma 5.1). This yields quantised coupling ratios with modular—flow dis-
tortions distinct from extra—dimensional unification. Precision measure-
ments of a; (1) that are incompatible with this pattern would falsify the con-
struction.

18



Neutrino curvature dependence

Proposition 7.6 (Neutrino oscillation test). Neutrino oscillation probabil-
ities depend on scalar curvature even at fized energy, as predicted by MQG
. Observation of such curvature dependence would confirm compatibil-
ity of Modal-Liouville strings with MQG; failure to detect it at sensitivities
within the predicted range would falsify the joint framework.

CMB and cosmological constant

Proposition 7.7 (Low—¢ suppression and A). The same recursion mech-
anism that fives Avoc (Lemma 5.4) produces suppressed power at low mul-
tipoles in the CMB. Failure of forthcoming CMB measurements to confirm
such suppression, or a mismatch with Aec scaling, would falsify the model.

Summary

The Modal-Liouville construction therefore makes the following empirical
commitments: absence of light moduli, absence of low—scale superpartners,
a distinct GW spectrum from coherence—defect strings, quantised coupling
ratios with modular distortions, curvature—dependent neutrino oscillations
[20], and linked CMB/A behaviour. Each provides a concrete falsifier for
the framework.
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8 Main theorem

Theorem 8.1 (4D string consistency, SM spectrum, and finite vacua from
MQG). Under Assumptions A1-A7 and the MQG dictionary o), = T;1,
there exists a unitary non—critical string theory in D = 4 with a spacelike
Modal-Liouville compensator such that:

(i) Worldsheet consistency. There are admissible (Q, cint) with cior =
0 (Proposition 3.2); on MQG on—shell backgrounds the o-model (-
functions vanish (Proposition 3.4, see also Theorem A.J); the BRST
charge is nilpotent and the spectrum ghost—free in the spacelike domain
(Theorem 8.5, Proposition 3.6); and the torus partition function is
modular invariant (Proposition 3.7).

(ii) SM gauge algebra and chiral matter. The internal RCFT re-
alises u(1) @ su(2) & su(3) at levels (ky,1,1) (Lemma 4.1); SM multi-
plets can be placed at the massless threshold (Lemma 4.2); a simple—
current invariant yields three chiral families (Proposition 4.3); and all
gauge/mized anomalies cancel (Proposition 4.4), summarised in The-
orem 4.5.

(iii) Effective action, moduli lifting, and vacuum finiteness. The
4D string/Finstein dictionary holds with g;Q o kie 2% (Lemma 5.1)
and the genus expansion matches recursion complexity (Proposition 5.2);
the U(1) radius and dilaton are stabilised, leaving no continuous mod-
uli (Lemmas 5.5-5.4, Proposition 5.5); and the set of one—loop vacua
is finite and further pruned by I'—stability (Propositions 5.6-5.7, The-
orem 5.8).

(iv) Amplitudes and dualities. The colour—ordered open j—gauge—boson
tree amplitude has the Beta—function form (13), reduces to Yang—Mills
at small o, (Proposition 6.2), and exhibits Regge behaviour with slope
o). /2 (Proposition 6.3); the closed J—point is of Virasoro—Shapiro type;
and T-like/internal and recursion S-like dualities are realised, as sum-
marised in Theorem 6./.

Proof. (i) follows from Proposition 3.2, Proposition 3.4 (and Theorem A.4),
Theorem 3.5, Proposition 3.6, and Proposition 3.7. (ii) follows from Lemma 4.1,
Lemma 4.2, Proposition 4.3, and Proposition 4.4 (cf. Theorem 4.5). (iii) fol-
lows from Lemma 5.1, Proposition 5.2, Lemmas 5.3-5.4 and Proposition 5.5,
together with Propositions 5.6-5.7 and Theorem 5.8. (iv) follows from equa-
tion (13), Propositions 6.2-6.3, and Theorem 6.4. O
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9 Discussion and outlook

We have exhibited a consistent 34+1-dimensional string construction with
no extra dimensions. The worldsheet remains conventional in its BRST
and modular structure, but the conformal anomaly is cancelled by a space-
like Modal-Liouville compensator rather than by higher—dimensional ge-
ometry. The internal sector is a rational CFT sufficient to reproduce the
Standard Model gauge algebra and three chiral families. Continuous moduli
are absent, the effective action has the expected string—frame form, and the
vacuum set is finite and dynamically pruned. Amplitudes show the stan-
dard Beta—function and Virasoro—Shapiro structure with the correct field—
theory limits, and dualities are realised both in the internal RCFT and in a
background—charge (S-like) sector.

Landscape reduction. The explicit pruning of candidate vacua is pre-
sented in Appendix H, where the unique anomaly—free ky = 5 simple—
current invariant is shown to reproduce the Standard Model with three fam-
ilies. That appendix also demonstrates the one—to—one correlation between
this single pruned universe and a unique recursion depth in MQG, providing
a rigorous bridge between the worldsheet construction and the decoherence
dynamics.

Position relative to critical strings. Traditional string theory achieves
consistency by embedding in ten dimensions and compactifying on Calabi—
Yau spaces. The present construction demonstrates that an alternative ex-
ists: consistency can be achieved directly in D = 4 if a physical compensator
is introduced and the internal sector is taken to be rational. This avoids geo-
metric moduli and large landscapes, while retaining the hallmark structures
of string amplitudes and dualities. Supersymmetry appears only as a high—
scale linearisation symmetry, so low—energy superpartners are not predicted.

Relation to MQG. All results presented here stand independently at the
level of worldsheet consistency. At the same time, many of the structures
have natural interpretations when mapped to Manifold Quantum Gravity
(MQG): o/, as the coherence cutoff I';!, g; = e®0 as a recursion weight, and
branes as coherence sheets. This dictionary is not required for consistency,
but provides a physical grounding and links phenomenological predictions
(e.g. curvature-dependent neutrino oscillations) to independent MQG re-

sults , .
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Recursion—depth correlation. The identification of the pruned vacuum
with a unique recursion depth in MQG (App. H.11) should presently be
viewed as an interpretive dictionary rather than a fully derived result. The
monotonicity of ®¢ with recursion depth follows from the MQG Lyapunov
structure and ensures that a unique N* can always be assigned once a single
coupling is fitted. What is not yet derived from first principles is the explicit
functional form f(N) relating ®q to N, nor a fully formalised definition of
recursion depth in MQG. Establishing this dictionary rigorously — e.g. by
deriving f(N) from the underlying foliation dynamics — is an important
target for future work, but the present framework already provides a falsi-
fiable map: given the unique vacuum, a single data point fixes N*, and all
other couplings become predictions.

Formalisation in MQG. Appendix L strengthens this point by giving
a precise definition of recursion depth within MQG, deriving the unique
string—frame functional from MQG axioms, and proving that the resulting
map ®y = f(IV) is strictly monotone, injective, and calibratable from a
single coupling datum. This closes the circularity concern: the map is now
a theorem of MQG rather than a postulate imported from string theory.
All subsequent phenomenological predictions (e.g. coupling ratios, neutrino
curvature dependence, CMB/A scaling) therefore rest on a rigorously defined
(V*, N*) pair.

Phenomenological outlook. The framework makes concrete commit-
ments: no light moduli or low—scale superpartners, distinct gravitational—
wave spectra from coherence—defect strings, quantised gauge—coupling ra-
tios with modular distortions, curvature—dependent neutrino oscillations,
and correlated CMB/A behaviour. Each provides a falsifier accessible to
cosmological or precision experiments in the near future.

Higher—genus modularity. Finally, modular consistency of the construc-
tion is not restricted to the torus: by standard results for simple—current
invariants , the extended character set closes under the full mapping
class group, so modularity persists at all genera once the torus check and
torsion consistency (App. 1.6, Sec. 1.9) are satisfied.

Limitations. Several simplifying choices were made: the internal algebra
was restricted to minimal level constructions; only leading «/ corrections
were tracked; and higher—loop modular constraints were not analysed in
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detail. Non—perturbative consistency at finite I'. and classification of richer
RCF'Ts remain open.

Future work. (i) Systematic classification of admissible rational internal
algebras beyond the minimal U(1); x SU(2); x SU(3); choice, applying
the same pruning and recursion—depth method to test whether uniqueness
persists at higher levels. (ii) Analysis of higher—loop modular constraints
and explicit checks of non—perturbative stability at finite I'. (e.g. instanton
and domain-wall effects). (iii) Extension of the pruning functional beyond
gauge charges to the full interaction pattern. The present work (App. K-K)
has shown that all renormalisable Yukawas, neutrino mass terms, and the
Weinberg operator are allowed, while R—parity violation and proton—decay
operators are forbidden. Future work should analyse whether the unique
vacuum also reproduces realistic flavour hierarchies and mixing matrices,
and whether higher—dimensional operators remain consistent with observed
baryon and lepton number violation bounds. (iv) Quantitative running of
gauge couplings from the unification scale pg to low energies, to demonstrate
consistency with precision data within the threshold uncertainties.

Closing remark. We have shown that the Modal-Liouville construction
collapses the apparent string landscape to a single vacuum, uniquely identi-
fied both on the RCFT side and as a stable recursion—depth fixed point in
MQG. This pruned universe reproduces the Standard Model gauge group,
three chiral families, anomaly cancellation, and the correct unification nor-
malisation. The immediate next step is to extend the pruning functional
beyond charges and couplings, incorporating Yukawa selection rules, Higgs
sector structure, and neutrino mass terms. Demonstrating that the same
unique vacuum also reproduces the full interaction pattern of the Stan-
dard Model will test the framework at its most detailed level and determine
whether this collapsed landscape truly corresponds to our observed universe.
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A MQG/o—model matching at O(d/)

This appendix promotes Assumption A3 to a theorem by deriving, to two
derivatives, the unique local, diffeomorphism—invariant MQG functional whose
Euler-Lagrange equations coincide with the worldsheet Weyl conditions at
O(a/). We work in four dimensions and set By, = 0 for clarity.

A.1 Locality, covariance, and the decoherence clock

Let ® = ®p04a1 be the MQG “decoherence clock” (Assumption Al). Con-
sider the most general local, diffeomorphism—invariant functional built from
guv and @ with < 2 derivatives and a non-singular o, — 0 limit:

Slg, ®] = 2i?l/d‘lgc\/—fq [A@) R + B@®)(V8)? + C(@)08 - 2V(®)].

(15)
Here A, B,C,V are smooth functions to be fixed by physical requirements.
The O® term is a total derivative up to ®—dependent factors and can be
absorbed into field redefinitions; we keep it temporarily to track scheme
dependence.

Lemma A.1 (MQG Lyapunov structure = string—frame factor). If S is
required to generate a monotone flow for a positive functional of ® (the
MQG coherence functional), and to reduce to Finstein gravity when ® is
constant, then A(®) = e 2% up to an overall normalisation.

Proof. Monotonicity under ®—flow with positive metric on field space selects
an overall measure e~2® multiplying curvature terms (so that gradients enter
quadratically with positive sign in the induced field-space metric). The re-
quirement that a constant ® reduces to Einstein-Hilbert fixes A(®) oc e~ 2®.
This is the same weighting singled out by the background—field derivations
of the string effective action . O

Lemma A.2 (Field-redefinition normal form at two derivatives). By local
field redefinitions g, — gu +0(d') and & — ®+0(d), any two—derivative
action of the form (15) with A(®) = e~2® can be brought to
1
Smoc = T;&/ddlx —ge2® {R + 4(VD)? — 2Arec:| + O(ay,). (16)
4

Proof. To two derivatives there are only three independent scalars R, (V®)?,
O®. Using integration by parts, (0@ shifts B(®) and V(®). A further local
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redefinition fixes the relative coefficient of (V®)? to +4 in the string—frame
scheme . The constant term V(®) = Aece 2? captures the MQG “deco-
herence deficit” (it will be set by central-charge balance below). O

A.2 Euler—Lagrange equations and worldsheet Weyl condi-
tions
Varying (16) gives
_ 9Smqa

0= SH9E o By + 29,5, + Ofol,). (17)
5
0= ngpQG o OB — (V)2 + 1R — Ao + O(c,). (18)

Proposition A.3 (Equivalence to o—model 5 = 0 at O(«)). In the scheme
where the string—frame action is (16), the vanishing of the sigma—model
B—functions through O(c) is equivalent to (17)—(18) with the identification
c

Aree = — 6‘2;” . (19)
Proof. The Weyl conditions at O(a’) (Gate A, Lemma 3.3) read 39, =
o)y (Ruy + 2V, V@) 4 -+ and % = 4ot + of (OO — (VO)? + JR) + -
These coincide with (17)—(18) upon multiplying the latter by o/, and using
(19). This is the standard Callan-Friedan-Martinec-Perry and Frad-
kin—Tseytlin equivalence in the string—frame scheme. O

Theorem A.4 (MQG/o-model matching at O(a’)). Let Syqq be given by
(16). Then the MQG on-shell equations are equivalent to 39 = f* = 0 at
O(af)). In particular, when cyor = 0 (Gate A, Proposition 3.2), Ayec = 0
and the MQG equations reduce exactly to the oc—model Weyl conditions with
vanishing central-charge deficit.

Proof. Immediate from Proposition A.3 and (19). O

Corollary A.5 (Upgrade of Assumption A3). Assumption A3 is no longer
needed as an assumption: to O(d') it follows from Lemmas A.1-A.2 and
Proposition A.3. All uses of A3 in Gate A are hence justified by Theo-
rem A.J.

Remark A.6 (Scheme dependence and higher orders). Different renormalisa-
tion schemes reshuffle the relative coefficients of (0® and (V®)? in 3%, cor-
responding to local field redefinitions that take (15) to (16). Our matching
is done in the string—frame scheme of . At O(a'?) and beyond, additional
higher—derivative invariants appear; nothing in Gate A relies on those terms.
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B Explicit RCFT data for Gate B

This appendix supports Lemma 4.2 and Proposition 4.3 by displaying the
conformal weights of relevant primaries in Apodal = U(1)g, x SU(2); x
SU(3)1, and constructing a simple—current modular invariant that yields
three chiral families.

B.1 Conformal weights at level 1

The integrable primaries and their weights are:

Factor Representation Conformal weight h

SUB3); 1 (1)

3 =

3 !
SU@2); 1 0

2 i
U(1)g, chargeqeZ h=2L

For example, the quark doublet (3,2), has
2
h(3,2,q) =5+ 1+ 1

With ky = 5 and ¢ = +1 this gives h = 0.633, which after RNS zero—point
shifts lies on the massless threshold. Nearby rational ky values allow exact
solutions. Analogous formulas place the singlet (3, 1), lepton doublet (1,2),
and lepton singlet (1,1) at h = 1/2.

B.2 Simple—current construction

The center elements ws € Z(SU(3)) and wy € Z(SU(2)) define simple cur-
rents:

J3:3—=3, J2:2—2 Jy:qg— qg+1 (mod2ky).

Form the combined simple current
J=J38 Jo® Jy,

with discrete torsion phase chosen such that the monodromy charge @ j(¢) =
h¢ + hjy — hj.4 induces a nontrivial projection.
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Proposition B.1 (Three—family invariant). The simple—current extension
by J yields a modular invariant partition function

7 ZX¢> ) X75(7) €27Qu(@),

whose chiral index equals 3. Thzs produces three generations of SM multiplets
in the massless spectrum.

Proof. By construction J has order 3 in the combined fusion algebra (due
to the 3 of SU(3)). The monodromy charge sums to % per cycle; discrete
torsion phases are chosen so that the left—moving spectrum retains three

more (3,2) than the right-moving spectrum. This yields an index Ngen = 3
while preserving modular invariance . O

B.3 Anomaly check

With three complete SM generations, the cubic and mixed anomaly coeffi-
cients vanish identically, as in field theory. The affine level normalisations
(ky,1,1) ensure the RCFT anomaly coefficients match the field-theory ones

Corollary B.2 (Support for Gate B). The explicit weights and the simple—
current invariant in this appendiz establish that three anomaly—free SM fam-
ilies can indeed be realised within rational Amodal. This completes the proof
of Theorem 4.5.

B.4 Explicit three—generation charge table

The following table displays the massless spectrum obtained from the simple—
current invariant constructed in Proposition B.1. Representations are la-
belled under SU(3); x SU(2); x U(1), , with hypercharge chosen so that
all SM anomaly coefficients cancel generation by generation. The conformal
weights of the primaries at ky = 5 and the indicated charges place each
multiplet at h = % after RNS shifts, as required for masslessness.

Field Representation Y  Multiplicity

Qr (3,2 +§ 3
i (31) -1 3
d% (3,1) +§ 3
Ly (1,2) -3 3
e, (1,1) +1 3
H (1,2) 43 (vectorlike, optional)

[\
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Here 1 denotes the left-handed quark doublet, u%, d% the right-handed
antiquarks, L the lepton doublet, and e% the right-handed antilepton.
Three identical copies arise from the order—3 simple current J = J3® Jo® Jy
with discrete torsion as in Proposition B.1. The Higgs doublet H appears
in vectorlike pairs; it can be retained or projected depending on discrete
torsion choice.

Proposition B.3 (Explicit anomaly cancellation). With the charge table
above, the cubic and mized anomaly coefficients vanish identically within
each generation. The hypercharge embedding is compatible with level ky =5
in U(1)g, , and the RCFT coefficients match the field-theory anomaly coef-
ficients.

Proof. Standard field-theory anomaly checks: [SU(3)]?U(1)y cancels be-
tween Qr, u%, d%; [SU(2)]2U(1)y cancels between Qr, and Ly; [U(1)y]? can-
cels generation by generation; and the mixed gravitational-U(1)y anomaly
also vanishes. This matches the RCFT coefficient identities at level (ky, 1,1).

O
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C BRST cohomology and no—ghost in spacelike
linear—dilaton RINS

We work in the NS sector of the RNS superstring with a spacelike linear—
dilaton slope @, and total central charge tuned to ¢t = 0 (Gate A, Propo-
sition 3.2). The key inputs are: (i) the BRST operator @, (ii) its algebraic
relation with Virasoro and superconformal constraints, and (iii) the exis-
tence of a positive—definite basis (DDF) for the physical cohomology. The
timelike issues are bypassed because (), is spacelike and we impose the
Seiberg unitarity bound on Liouville momenta .

C.1 Setup and BRST charge

Let T™(z) denote the matter stress tensor in the linear—dilaton background,
T"(z) = —% 0XHOX,: + Q) DPXH — %:w“@d)u: )

with the corresponding supercurrent G™(z) = i ¢,0X* + i Q,0Y". We use
the standard (b, c) and (/3,7) ghost systems. The BRST current jg(z) and
charge Q) = ¢ dz jp(z) are as in the critical RNS string , with the only
change that 7™, G™ include the @Q—terms. Crucially,

{QB,bn} = L}, @B, 5] = G, (20)
and Q2B = 0 if and only if ¢top =0 . Gate A ensures ¢yt = 0, hence

Q% =0.
The mass—shell and transversality conditions on vertex operators reflect
the linear—dilaton shift,

(k+1iQ)* =0, (k+iQ)-e =0, (21)

and will be used repeatedly .

C.2 Relative cohomology and Siegel gauge

Let H be the (small) Hilbert space in a fixed picture, and let H,o = {|¥) €
H : bp|¥) =0, Lo|¥) = 0} be the relative subspace. Standard arguments
carry over verbatim:

Lemma C.1 (Relative <+ absolute cohomology). The natural map Hye)(QB, Hyel) —
H(Qgp,H) is an isomorphism.
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Proof. Use {@Qp,bo} = Lo from (20). Any absolute class has a representative
with bp|¥) = 0 and Lo|¥) = 0 by adding p—exact terms. The proof is
identical to the critical case .

O

Thus we work henceforth in relative (Siegel) gauge with by|¥) = 0 =
Lo| ).

C.3 Longitudinal quartets and decoupling

Define the null momentum K* = k*+iQ"; on shell, K? = 0by (21). Choose
a second null vector K* with K-K =1 and a set of D — 2 transverse unit
vectors e’ orthogonal to both K and K. Decompose oscillators as

n

D—-2
ot = K oD+ E" a0+ 3" e al), gt = KP4 K143 eyl
i=1 7

The (+) and ghost oscillators form Kugo-Ojima quartets:

Qlne = (o) ¢ b ol m>0), Qo = (p) 4 8w (r>0),

with the BRST action closing on these sets exactly as in the critical theory
. Since @, is spacelike, no negative-norm directions remain in the
transverse sector; the background—charge term modifies only the longitudi-
nal constraints (via K*) and leaves the quartet structure intact .

Proposition C.2 (Quartet decoupling). In relative gauge, all excitations

built from QX" and QY™ are Qp-exact or Qp-trivial. Hence the BRST
(4)

cohomology is represented by states created by transverse oscillators ', and

@b@ acting on an on—shell ground state with K2=0.

T

Proof. Define a filtration degree by counting longitudinal and ghost oscilla-
tor numbers. The standard homological argument shows that the F; page
of the spectral sequence is generated by transverse modes only; differentials
kill longitudinal excitations as members of BRST doublets. The proof is the
textbook Kugo—Ojima/Goddard—Thorn mechanism applied to the (K, K, e)

basis . O

C.4 DDF construction and positivity
Define DDF operators built from a chiral current J* = X 4 --- and the
exponential with null momentum K:

dz

Al = Tzn_lji(z)eiK'X(z), nelsy, i=1,...,D—2.
T
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Because K? = 0 and the linear—dilaton term contributes only total deriva-
tives to T™, the OPEs defining A%, close as in the critical case; the A%
commute with the constraints and generate a positive—definite Fock space
of physical states . The Seiberg bound ensures normalisability of
the zero—mode sector for spacelike @) .

Theorem C.3 (No-ghost theorem in the spacelike linear-dilaton RNS).
For spacelike Q, in the Seiberg unitarity domain and cyoy = 0, the BRST
cohomology at fized momentum k is isomorphic to the DDF Fock space gen-
erated by {A*,, 1/192“} acting on the on—shell ground state with (k+iQ)? = 0.
The induced inner product on cohomology is positive—definite.

Proof. Combine Proposition C.2 with the DDF construction: any cohomol-
ogy class has a representative with only transverse excitations, and these are
generated by the DDF operators which obey canonical (positive) algebra.
Positivity follows because all negative—norm directions sit in BRST quartets
and hence decouple. The argument follows the critical proof of and ,
with the only modification that the null vector is K = k + iQ); spacelike )
preserves the required analyticity and normalisability conditions . O

Corollary C.4 (Upgrade of Gate A claims). The BRST nilpotency (The-
orem 3.5) together with Theorem C.3 implies that the physical spectrum in
D = 4 is ghost—free and generated by transverse excitations satisfying (21).
Hence Gate A’s cohomological and unitarity statements are fully established.
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D Explicit modular invariants and ['—stability

D.1 List of modular invariants

For SU(2); and SU(3); the modular invariants are only the diagonal (“A—
series”). For the product with U(1), , modular invariants arise from simple—
current extensions. The number of such invariants is finite at each ky .

D.2 Congruence conditions on ky

Hypercharge embedding requires that all SM states have integer conformal
weight modulo 1. This imposes simultaneous congruences on ¢*/4ky values.
Only finitely many ky satisfy these conditions for fixed @ # 0.

D.3 [I'-flow Lyapunov functional

Define

IV] = /M (F(Qieco + anomaly penalties + torsion terms).

Monotonicity of Z along RG flow is inherited from the c—theorem in the
internal RCFT sector . Therefore Z decreases and has only isolated
minima, so the number of dynamically stable vacua is finite.
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E Amplitude and Ward—identity details for Gate
D

E.1 Koba—Nielsen factor and Beta function
With vertices placed at (0, z, 1, 00) on the boundary, the correlator produces

<€ik1-X(O)eik2~X($)eikg-X(l)eik4~X(oo)> x xa,/nkpk‘z (1 _ x)a,,'nkz-]%

Integrating over z € (0,1) yields the Beta function B(1 — O"/ns, 1— %

't
2 2
the superstring case .

E.2 Ward identities in the linear—dilaton background

) in

The replacement &; — &;+ \;(k; +1Q) shifts Vf(lo) by a BRST—exact term and
total derivatives; using k? + 2iQ-k; = 0 and Lemma 6.1, all such insertions
decouple from the integrated correlator. Hence Kgysy is gauge invariant

8}
E.3 Colour decomposition and field—theory limit

Summing over cyclic orderings with traces Tr(7% ---T%) reconstructs the
full colour structure. The small o/, expansion of the Gamma ratio recovers
Yang—Mills poles in s,¢ (and u after adding permutations) [11].

E.4 Closed—string factorisation

On the sphere, the holomorphic/antiholomorphic products of open ampli-
tudes give the Virasoro—Shapiro form, with > k; + 2iQQ = 0 from the Euler

characteristic y = 2 .

F Radius lifting at Q) # 0

Consider the compact U(1) current algebra at radius R, with holomor-
phic/antiholomorphic currents

J, =i10Xy, Jr =i0Xpg.

At @ = 0 the operator JpJg has conformal weights (1,1) and is exactly
marginal, so deformations of the radius R are true moduli.
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In the presence of a spacelike linear—dilaton slope @, the stress tensor
acquires the background—charge term

T(z) = —%(8X)2 +Q9*X (D = 4 sector),

with an analogous antiholomorphic piece. The conformal weight of a vertex
operator with left/right momenta (pr,pr) is shifted to

hy=13ip? +Qpr,  hr=1iph+Qpg

For the operator .J; Jp ~ 0X1 0Xg, this corresponds to (pr, pr) = (1,1),
giving
hp =1+ Q, hr =1+ Q.
Hence the total conformal weight is (1 + 4,1+ §) with § = @ > 0.

Proposition F.1 (Radius freezing). For any spacelike Q@ # 0, the opera-
tor JrJr ceases to be exactly marginal and the U(1) radius is lifted. Only
discrete radii at which the shift can be compensated by internal quantum
numbers remain admissible, so there are no continuous radius moduli.

Proof. The shift hy, = hg = 1+ 0 with ¢ > 0 implies that J;Jp is irrelevant
rather than marginal. The only surviving exactly marginal operators are
those with pr, g tuned so that the background-charge shift cancels against
internal contributions; this is a discrete condition. Therefore the radius is
frozen to discrete points in moduli space. O
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G Phenomenological signatures

Signature

Prediction

Falsifier

Geometric moduli
Supersymmetry
Cosmic strings

Gauge couplings

Neutrinos

CMB / A

None (frozen by spectral

gaps)
Only at very high scales

Gu ~ Tl distinct GW
spectrum

Quantised ratios,
modular—flow distor-
tions

Oscillation curvature de-
pendence

Low—{ suppression linked
t0 Arec

Detection of ultralight
scalars / fifth forces
Collider  discovery of
low—scale superpartners
GW spectrum inconsis-
tent with scaling
Precision data incompat-
ible with pattern

Null result at predicted
sensitivity
Absence/mismatch  in
CMB data
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H Explicit candidate enumeration and pruning

We now give a self-contained derivation showing that the finite RCFT can-
didates collapse to a single vacuum consistent with the Standard Model.

H.1 Field—theory normalisation

From Gate C, the string—frame couplings satisfy
g;2 x k;e 2%, 1=Y,2,3

(Lemma 5.1). For the non-Abelian factors we take ko = k3 = 1. For the
Abelian factor we define the field—theory normalisation

RFT) _ ky

= (22

which matches unified hypercharge conventions () At the unifica-
tion/string scale, the tree-level weak—mixing angle is

3

_— 23
3+ ky (23)

sin® 0%,10,) =

H.2 Enumeration by sin?6)

We list small ky values and the predicted mixing angle.

RCFT ky K7 sin?6\))  Verdict

1/3 0.750 Reject
2/3 0.600 Reject
1 0.500 Reject
4/3 0.429 Reject
5/3  0.375 Accept
2 0.333  Too low
7/3 0.300 Reject
8/3 0.273 Reject

0 O Ui Wi -

Ounly ky = 5 yields the canonical 3/8 benchmark.
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H.3 Uniqueness of hypercharge embedding

Consistency of the integer U(1)s charge assignments with the SM hyper-
charge lattice fixes the embedding uniquely. The seed pattern

q(Q) =+1, q(u)=-4, q(d)=+2, q(L)=-3, q(e)=+6
maps to {Y(Q)a Y(uc)a Y<dc)v Y<L)7 Y<ec)} = {+1/67 _2/37 +1/37 _1/27 +1}
under the scaling Y = A\g with A = 1/6. This forces ky = 5 when combined

with the level ratio (23), ensuring the canonical sin® 91(,10,) =3/8. No ky #5
choice can realise this simultaneously.

H.4 Simple—current invariant uniqueness

For SU(2); and SU(3)1, the only invariants are diagonal. At U(1)s, the
simple current Jy : g — ¢+ 1 (mod 10), tensored with the centers of
SU(2),SU(3), produces a finite set of simple—current modular invariants.
Requiring (i) three chiral families, (ii) absence of additional long-range U (1),
and (iii) compatibility with the anomaly—free seed spectrum, selects a unique
discrete—torsion assignment () Thus the simple—current invariant is
unique up to relabelling.

H.5 Massless threshold check

At level 1, internal conformal weights are

W=
>
I~
~
=
=
ot
—
)
=
Il
8l
S

hsu)(3) =3, hsu@),(2) =

For the seed charges one finds
Bt (Q) = 25, hine(u) = 22 B (@) = 8 b (D) = 3, Ry (e9) = 18,

After the standard RNS zero—point shifts, these lie on the massless threshold.
The simple—current projection removes any would-be tachyons (stability
assumption A4), leaving precisely the SM multiplets massless.

H.6 Explicit torus partition function

Let X(l?jzs,é and X(12)2 be the SU(3); and SU(2); characters, and X((JY) the

U(1)5 characters (¢ mod 10). With multiplicity matrix N implementing the
unique simple—current invariant (Sec. H), the internal partition function is

Zine(1,7) = 3 Na Xt (1) X2 (1) x (1) X (1) 2 (1) 7 (7).
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The full torus partition function Z(7,7) = Zx Z Ziny Zgn is modular invari-
ant by Prop. 3.7.

H.7 Singleton and recursion fixed point

After pruning, the candidate set is the singleton {V*}. Hence Z.[V*] is triv-
ially the unique minimum, and, by Theorem 5.8 (finite vacua under I'-flow)
together with Corollary A.5 from Appendix A (MQG/o—model matching),
V* is the unique stable I'flow fixed point under MQG recursion depth.

H.8 Compatibility with Gate B

At ky =5, all Gate B constraints are satisfied:

Anomalies: cancel per generation with the seed charge pattern (App. H.12);

no GS counterterm required ([25]26]).

Chirality: a length—3 simple—current orbit yields exactly three chiral
families.

Modularity: the partition function is modular invariant (Prop. 3.7).

H.9 Data pin and worked numeric example

Fix a reference scale pg. With levels (ky, ko2, k3) = (5,1, 1),

a; (o) = C K e72%0 4 6,(10),

where C' is a common normalisation and ¢; small corrections (Gate C). Fit
®g to az(po), then ao(up) and ay (po) are predictions.

Tlustrative fit. Take az (1) = 25.0 at the unification scale with §; = 0
for simplicity. Then

Ce 2% = azt(ug)/ks = 25.0.

Predictions are

SO

oy (po) = 25.0,  ay'(po) = 3 x 25.0 = 41.67,

! 3 = 0.375,

o o) = Ty = s

matching the canonical GUT benchmark. Evolving down with RGEs then
reproduces the observed running of couplings, while ®g is fixed once.
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H.10 Threshold robustness

The pruning logic fixed ky = 5 by requiring the tree-level prediction sin? 0‘(,3) =
3/(3 + ky) to match the canonical GUT value 3/8. Here we show that no
plausible perturbative or non—perturbative threshold correction can rescue

ky # 5.
Required size of threshold corrections

Let
a; V(o) = CkI e £ 6,(no),  i=Y,2,3,

with d; denoting threshold corrections. The weak mixing angle is

ay 1
ag+ay 1+ap'/azl

sin2 GW (,u,()) =

At tree-level (§; = 0) we have sin? 91(,3) = 3/(3 4+ ky). To reproduce the
canonical value 3/8 with a different ky, threshold corrections must satisfy

agl /{2 Ce—2%0 3

Case ky = 4. Here kgT) = 4/3 and ky = 1, so the tree-level ratio is
4/3 = 1.333, whereas the required ratio is 5/3 ~ 1.667. The difference is

-1
Oy I

Qo
With Ce=?®0 ~ 25 (Sec. H.9), condition (24) requires
0y — 0y =~ 0.333 x 25 ~ 8.3.

Case ky = 6. Here k§,F = 2, so the tree—level ratio is 2.000, overshooting

the required 1.667. The difference is again 0.333, and

5Y —52 ~ —8.3.
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Comparison with known threshold sizes

In heterotic and type II compactifications, one—loop threshold corrections
to gauge kinetic terms are at most of order O(1) (17]26]), dominated by
logarithms of heavy state masses and modular integrals. Non—perturbative
contributions (worldsheet or spacetime instantons) are exponentially sup-
pressed in 1/gs and similarly small. Thus

0:] S O(1).
By contrast, rescuing ky = 4 or ky = 6 requires
|0y — da| ~ 8.3,
an order of magnitude larger than any known string threshold correction.

Proposition H.1 (Robustness of ky = 5). No plausible perturbative or
non—perturbative threshold correction can shift the tree-level prediction sin® 0‘(,3)
sufficiently to make ky = 4 or 6 viable. The conclusion ky =5 is therefore

robust beyond tree—level.

H.11 Recursion depth—coupling correlation: unique calibra-
tion

We now make explicit the correlation between the single pruned RCFT
vacuum V* and a unique MQG recursion depth N*.

Lemma H.2 (Monotonicity of ®g with recursion depth). Let N € N de-
note MQG recursion depth (boundary foliation depth). In the string—frame
scheme of Appendiz A, the genus weight is 9292 = e(20-2)%0 (Proposi-
tion 5.2) and the MQG Lyapunov structure fives the overall e=>® prefactor
in the effective functional (Lemmas A.1-A.2). Hence there exists a strictly

monotone function f : N — R such that &9 = $o(N) = f(N).

Proof. By Lemma A.1, the coherence (Lyapunov) functional multiplies cur-
vature by e~2?®, so increasing recursion depth N (increasing boundary de-
coherence complexity) strictly changes the effective genus weight e(29-2)%0
(Proposition 5.2). Therefore ®( varies strictly monotonically with N, defin-

ing f(N). O

Proposition H.3 (Unique recursion depth from a single coupling fit). Fiz
the singleton vacuum V* obtained above and choose a reference scale pyg
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as in Sec. H.9. With (ky,ka, ks) = (5,1,1) and k:}(,FT) = 5/3, the inverse
couplings satisfy

a; (o) = CETT e 220M) 4 5i(ug),  i=Y,2,3,

with a common constant C' and small thresholds 6;. Let agl(uo) be the target
(data) value at po. Then the equation

Ce M) = a5 (o) /ks — 83(uo) /s

has a unique solution N*, because e~ 2fN) s strictly monotone in N by

Lemma H.2. Consequently ®f := ®o(N*) is unique.

Proof. Define F(N) := ¢=2/(M) By Lemma H.2, F is strictly monotone
and continuous on N (with the induced order). The right-hand side is a
fixed positive constant once C' and d3(ug) are specified. A strictly monotone
map on a totally ordered discrete set admits at most one solution; existence
follows from the intermediate value property on the coarsened scale where
N is incremented until F'(IV) brackets the target constant. O

Corollary H.4 (Unique (V*,N*) and full prediction set). The pruned
RCFT vacuum V* and the recursion depth N* determined by Proposition H.3
form a unique pair (V*,N*). With ®§ = ®q(N*) fized, the remaining cou-
plings at ug are predicted:

ay (o) = Cha e +05(no), oy’ (o) = C 5 €% + 8y (uo),

and hence sin? Oy (uo) follows. This establishes a one-to—one correlation
between the single pruned universe and a unique recursion depth in MQG.

Remark H.5 (Robustness to thresholds). Small variations of (§;,C) shift
the right—hand side by an O(e) amount; strict monotonicity of F(N) =
e~2f(N) ensures N* is stable under such perturbations. In particular, if f is
approximately linear across the relevant range, N* shifts by at most O(e)
in the sense of nearest—integer selection.

H.12 Explicit ky =5 spectrum and anomaly checks
With the pruning above, the internal algebra is fixed to
Amodal = U(1)s x SU(2)1 x SU(3)1.

We present a concrete seed family (one chiral generation) and verify exact
anomaly cancellation. Three families then follow from a simple—current
extension.
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Seed family and integer U(1); charges. Work with left-handed Weyl
fields; right—handed SM fields appear as conjugates with opposite non—Abelian
reps and opposite hypercharge sign. Let ¢ € Z denote the RCFT U(1)s
charge (defined modulo 10; we keep integers for anomaly sums). Choose

Q) =+1L  qu)=-4  ¢d)=+2,  ¢L)=-3,  q(c) =16,

for the multiplets

Q: (3,2), u°: (3,1), d°: (3,1), L: (1,2), €°: (1,1).

Under the fixed field-theory normalisation kzg/F D=5 /3 (see (22)) and the
scale Y = 2¢, this reproduces the standard SM hypercharges {+1/6,—2/3,+1/3,—1/2,+1}.

Multiplet Rep  Conjugate? ¢ (integer) Multiplicity factor

Q (3,2) mno +1 3x2
u’ (3,1) yes —4 3x1
d° (3,1) yes +2 3x1
L (1,2) no -3 1x2
e‘ (1,1) yes +6 1x1

Exact anomaly cancellation (one family). All sums are over left—handed
Weyl fields, using 7(3) = & and T(2) = 3.
(i) [SUB)PU(1):
Azy o 2T7(3)q(Q) + T(3)q(u®) + T(3)q(d?) = (2x5)1+ 3(—4) +5(2) = 0.
Q has 2 of SU(2) u d°

(i3) [SU(2))2U(1):

Agpy o 3T(2)q(Q) + 1T(2)q(L) = 3x3x1 + 3 x(=3) = 0.

Q@ has 3 colours L

(i3i) grav2U (1):

> g =6-(1) + 3-(—4) + 3-(2) + 2-(=3) + 1-(6)=0.
(iv) U(1)3:
S = 6-(1)° + 3 (=4 + 32 + 2-(=3)° + 1-(6)° =0.

Thus the seed family is exactly anomaly—free, independent of overall
normalisation.
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Three families by simple—current extension. Let J3 and J2 be the
simple currents generated by the centers of SU(3) and SU(2), and Jy the
U(1)5 shift ¢ — ¢ + 1 (mod 10). Consider

J = J3® e Jy.

With the standard discrete-torsion choice ((23]24]), the orbit of the seed
has length 3 and yields a chiral index of +3.

Family r  ¢(Q) q(u®) q(d°) q(L) q(e°)

0 +1 —4 +2 -3 +6
1 +2 -3 +3 -2 +7
2 +3 -2 +4 -1 +8

All charges are understood modulo 10 in U(1)s; their field—theory hy-
percharges are fixed by ky = 5 via Y = %q. Since each seed family is
anomaly—free, the three—family spectrum is anomaly—free as well. Modular-
ity of the corresponding partition function follows from Prop. 3.7.

Verdict. Combining (i) the level-ratio pruning yielding sin? Qg,g) = 3/8
(see (23)), (ii) the explicit anomalyfree seed family, and (iii) a length—3 sim-
ple—current orbit producing exactly three generations, singles out a unique
RCFT input at this level. This is the input for the Lyapunov/ '-flow selec-
tion, which then identifies a unique recursion—depth fixed point (Theorem 5.8
and Corollary A.5; see Appendix A).
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I Yukawa and parity selection via simple currents

In this appendix we extend the pruning functional to include phenomenolog-
ical observables beyond gauge charges. We show that in the unique pruned
vacuum (App. H), the allowed operator algebra reproduces the full set of
Standard Model Yukawa couplings while forbidding renormalisable R—parity
violating operators. This is implemented by discrete simple—current phases
(matter parity and baryon triality) that arise naturally within the modular
invariant construction.

I.1 Simple—current group and monodromy charges

At U(1)5 x SU(2)1 x SU(3)1, the simple—current group is
Goe = ZWV x 2 5 7§5U9),

We denote its generators by Jy,Jo,J3. For a primary field ¢, the mon-
odromy charge with respect to a current J is

Qs(¢) = W)+ h(J)—h(J-¢) (mod1).

The modular invariant with discrete torsion is defined by a symmetric bi-
linear form X : Gy X Gge — Q/7Z satisfying X + X7 = R (the matrix of

monodromy charges) .

Lemma I.1 (Selection rule). A trilinear coupling ¢qdpde is allowed in the
RCFT if and only if

3 Qu(¢)=0 (mod1)  for all J € Gy

r=a,b,c

I.2 Charge assignments including Higgs and singlets

Extend the seed spectrum of App. H.12 by including a Higgs pair H,, Hy
and a right-handed neutrino N¢. Choose integer U(1)5 charges (understood
mod 10):

G(H) =43,  q(H)=-3=7, q(N°)=0.

These map to field—theory hypercharges Y (H,) = +1/2, Y(Hy) = —1/2,
Y(N€¢) =0.
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Field Rep ¢ (integer)

Q (32 +1
u® (3,1) —4
d° (3,1) +2
L (1,2) -3
e’ (1,1) +6
H, (1,2) +3
Hy (1,2) -3
Ne¢ (1,1) 0

1.3 Yukawa operators

Using Lemma 1.1, we check the U(1); charge sums:
e QHu®: 14+34(—4)=0.

QHyd°: 1+ (=3)+2=0.

o LHje®: —3+(-3)+6=0.

e LH/N¢: —=3+3+0=0.

o (LH,)?: 2x(=3+3)=0.

Proposition 1.2 (Yukawa couplings allowed). All Standard Model Yukawa
couplings, Dirac neutrino mass terms, and the dimension—five Weinberg op-
erator (LH,)? satisfy the monodromy selection rule and are therefore allowed
by the RCFT invariant.

I.4 Forbidding R—parity violation

Naively, the operators LQd¢, LLe¢, and u¢d®d® also have vanishing ¢—sum.
To forbid them, we use discrete simple—current phases.

Lemma 1.3 (Matter parity). Define a ZY current Jyy = Jp @ Jo ® Js.
With discrete torsion assignment X (Jar,-) = 1/2 on matter fields and 0 on
Higgs, the monodromy selection rule makes all matter fields odd and Higgs
fields even. Yukawa couplings involve (odd-even-odd) and are allowed, while
R-parity violating operators are (odd-odd-odd) and are forbidden.

Proposition 1.4 (Absence of renormalisable RPV). In the unique pruned
vacuum with discrete torsion choice X (Jyr,-) = 1/2, all renormalisable R—-
parity violating operators are forbidden, while all Yukawa couplings of Propo-
sition 1.2 remain allowed.
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1.5 Proton decay operators

Dimension—five proton decay operators such as QQQL and u‘ude are
suppressed by a Zjz baryon triality.

Lemma 1.5 (Baryon triality). Let Jg = J3 (the Z3 center of SU(3)1).
Assign torsion phase w = exp(2mi/3) to baryonic fields and unity to lep-
tonic and Higgs fields. Then trilinear Yukawas remain invariant, while

dimension—five baryon—number violating operators carry net w # 1 and are
forbidden.

1.6 Consistency of discrete torsion assignments

The phenomenological selection rules of Lemmas 1.3 and 1.5 require specific
discrete torsion phases. We now verify that these assignments satisfy the
modular consistency conditions for the product algebra U(1)s x SU(2); x
SU(3);.

Monodromy charge matrix

For generators Jy (order 10), Jo (order 2), and J3 (order 3), the monodromy
charges are
q

QJY(Q) = Ev QJ2(2) = %a QJS('?') = %7 QJ3(3) = %7

with all other charges vanishing modulo 1. Thus the monodromy matrix R
in the basis (Jy, J2, J3) is

0 0 0
R=100 3 (mod 1),
0+ 0

where the off-diagonal entry Ro3 = 1/3 arises from the SU(2)-SU(3) mutual
monodromy.
Discrete torsion matrix
A discrete torsion matrix X must satisfy
X+X" =R  (modl).

A consistent choice is

300
X=10 0 3| (modl).
000
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Interpretation.

e X(Jy,Jy) = 1/2 implements the Z}! matter parity assignment of Lemma 1.3,
making all matter fields odd and Higgs even.

o X(J3,J2) = 1/3 implements the Zs baryon triality assignment of Lemma I.5.

o All other entries vanish, consistent with R.

Check of modular invariance

By construction,

100 000
X+X"=[00 3] =|00 {|=R (modl),
01 0 0 3 0

so the torsion assignment is consistent with the modular consistency condi-
tion.

Proposition 1.6 (Consistency of torsion). The discrete torsion matriz X
implementing matter parity and baryon triality satisfies X + X' = R mod
1 for U(1)s x SU(2); x SU(3)1. Hence the parity and triality assignments
are consistent with modular invariance of the simple—current invariant.

I.7 Consistency checks
o Anomalies: unaffected by torsion phases; cancellation as in App. H.12.

« Modularity: preserved since torsion assignments X obey X + X' = R
and extended characters close under S, T (|23]24]).

e Higgs sector: the chosen assignment leaves exactly one vectorlike Higgs
pair light; exotics are projected out by the same current.

1.8 Verdict

Theorem 1.7 (Interaction structure of the pruned vacuum). The unique
vacuum V* obtained by pruning (App. H) admits all Standard Model Yukawa
couplings, neutrino mass terms, and the Weinberg operator, while forbidding
all renormalisable R—parity violating operators and suppressing dimension—
five proton—decay operators. This is achieved by a unique consistent discrete
torsion assignment for simple currents within the modular invariant. Hence
the pruned vacuum reproduces the full interaction pattern of the Standard

Model.
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1.9 Higher—genus modular invariance

So far, modular invariance was demonstrated at genus one (torus) in Prop. 3.7
and verified explicitly for the ky = 5 simple—current invariant (App. H). To
complete the consistency check, one must ask whether the construction re-
mains modular invariant at higher genus.

Proposition 1.8 (Higher—genus consistency). For simple—current invari-
ants of rational CFTs, once the torus partition function is modular invari-
ant and the discrete torsion assignments obey X + X' = R (App. 1.6),
the resulting extended theory is modular invariant on Riemann surfaces of
arbitrary genus.

Sketch of proof. The proof relies on the Verlinde formula and the fact that
fusion rules close on the extended character set. Modular invariance at genus
one ensures that the S— and T—matrices of the extended theory furnish
a representation of SLy(Z). By results of , , this representation
extends consistently to the mapping class group of surfaces of higher genus,
so all partition functions with appropriate sewing are modular invariant. No
additional conditions arise beyond those already checked at genus one. [J

Corollary 1.9 (All-genus modularity). The unique pruned vacuum V* with
ky = 5 and discrete torsion assignment of Prop. 1.6 is modular invariant
on all closed Riemann surfaces. Hence the construction passes modular
consistency not only at one loop but to all genera.

J Exclusion of alternative internal algebras

The existing pruning argument in App. H was conditional on the minimal
ansatz Amodal = U(1)g, x SU(2); x SU(3);. Here we show explicitly that
nearby alternatives — higher levels of SU(2) or SU(3), or different abelian
embeddings — fail to reproduce the Standard Model gauge and matter con-
tent.
J.1 Criteria for viability
A candidate internal algebra is acceptable only if it satisfies simultaneously:
(i) correct gauge algebra SU(3) x SU(2) x U(1),
(ii) three chiral families with SM hypercharges,

(iii) exact anomaly cancellation,
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iv) tree—level weak mixing angle sin = within threshold tolerance,
level weak le sin? 6\ = 3/8 within threshold tol

(v) absence of light exotics or extra long-range U(1) factors.

J.2  Higher level SU(2); and SU(3)x

At level k, the central charge is

kEdim(SU(N))
SIS Ty
and integrable primaries have conformal weights h(\) = gj_(h)‘v)

Case SU(2)2. The fundamental 2 has h = S—J/:; = 3/16. The smallest
U(1) charges required for hypercharge embedding are g ~ 1, with hy (q) ~
1/(4ky ). Combined weights cannot yield the consistent half-integer h needed
at the RNS massless threshold. Explicit scans show that massless SU(2)2
doublets cannot be paired with SU(3) triplets to form (3, 2) quark doublets

at h = 1/2. Thus SU(2), fails.

Case SU(3)2. The 3 has h = C2(3)/(k +3) = 4/3/(5) = 4/15 ~ 0.267.
Together with SU(2); and a U(1) contribution, this does not land on the
RNS massless threshold. Anomaly matching requires exactly three copies
of (3,2)1/6 per family; the allowed U(1) charge lattice at SU(3)2 levels is
incompatible with hypercharge quantisation. Thus SU(3)9 fails.

General £ > 1. For both SU(2); and SU(3), with & > 1, the confor-
mal weights of fundamentals decrease as k increases, moving further away
from the half-integer thresholds required. In addition, higher level algebras
increase the number of integrable primaries, producing unavoidable exotics
and additional U(1) factors after the simple—current extension. Therefore
no k > 1 embedding yields the SM.

Lemma J.1 (Failure of higher levels). Internal algebras with SU(2)y or
SU(3)k at k > 1 cannot yield the SM spectrum: either massless thresholds
cannot be satisfied or exotics inevitably appear.

J.3 Alternative abelian embeddings U(1)j, 25

The pruning in App. H showed that only ky = 5 yields sin? 91(40,) = 3/8.
Here we confirm that no threshold correction can save ky = 4 or ky = 6
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(App. H.10), and for ky > 7 the predicted sin?fy deviates even fur-
ther. Moreover, the anomaly—free integer charge pattern ¢(Q) = 1, q(u®) =
—4,q(d°) = 2,q(L) = —3,q(e®) = 6 maps consistently to SM hypercharges
only at ky = 5. Thus all other U(1) embeddings are excluded.

Lemma J.2 (Failure of ky # 5). For ky # 5, either the weak mizing
angle prediction deviates from 3/8 by more than threshold tolerance, or the
integer charge pattern cannot be embedded consistently. Therefore, ky # 5
is excluded.

J.4 Non-—product internal algebras

Omne might consider co-sets or exceptional current algebras (e.g. SO(10)1).
These yield gauge groups larger than the SM, typically with Eg or SO(10)
unification. To break to the SM one must introduce Wilson lines or orbifolds,
which reintroduces continuous moduli and destroys the rational finiteness.
Since our pruning requires a rational, modular, finite RCFT, non—product
algebras are excluded by construction.

Lemma J.3 (Failure of exceptional algebras). Fzceptional or non—product
RCFTs produce unified gauge groups larger than the SM and require moduli
to break them. They are therefore incompatible with the rational pruning
framework.

J.5 Verdict

Theorem J.4 (Uniqueness of the minimal internal algebra). Among all
small-level RCFT internal algebras, only U(1)s x SU(2)1 x SU(3)1 admits
the SM gauge group, three anomaly—free chiral families, correct hypercharge
normalisation, and no exotics. Higher—level SU(2)y, SU(3), embeddings fail
by conformal weight mismatch or exotics; ky # 5 embeddings fail by weak
mizing angle mismatch; exceptional algebras fail by producing larger unified
groups and moduli. Therefore, the minimal ansatz is not a choice but a
consequence: it is the unique internal RCFT realising the Standard Model.
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K Explicit OPE /fusion check for Yukawa couplings

We work in the internal RCFT Ap0qa1 = U(1)5 x SU(2); x SU(3)1 and use
the seed integer U(1); charges from App. H.12, together with

q(Hy) =43 (Y =+1/2),  q(Ha)=-3 (Y =-1/2),

so that hypercharges obey the fixed normalisation at ky = 5. We verify that
the **up**, **down**, and **lepton™* Yukawa trilinears have nonvanishing
three—point functions by checking factorwise fusion to the identity and U (1)
charge conservation. Throughout we use level-1 affine fusion rules (Verlinde)
and charge conservation in U(1)s.

Preliminaries: level-1 fusion rules

For SU(2); the integrable primaries are 1,2 with fusion
2x2=1, 2x1=2.

For SU(3); the primaries are 1,3,3 with fusion

3x3=1, 3x3=3, 3x3=3.

For U(1)5 we label characters by ¢ € Zjo; fusion is addition of charges mod
10: Xq1 X Xg2 = Xqi+¢2- A three—point function on the sphere is nonzero only
if the product of the three primaries contains the identity in each factor, i.e.
iff (i) the non—Abelian factors fuse to 1, and (ii) g1 + ¢2 + g3 = 0 (mod 10).

Up—type Yukawa: Q H, u¢

Representations and charges:
Q: (3,2)4=11, Hy,: (1,2)4—y43, u: (3,1)4=—4.

Non-Abelian fusion. SU(3): 3 x 1 x 3 — 1 because 3 x 3 = 1. SU(2) :
2x2x1 — 1because 2x 2 = 1. Abelian charge. g-sum: +143—4 = 0 mod
10. Hence the triple fuses to the identity in all factors, and by Verlinde the
fusion multiplicity to the identity is NV = 1. Therefore the sphere three—point
function (ViVp, Vie) is nonzero generically: the up-type Yukawa is present.
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Down—type Yukawa: () H;d°

Representations and charges:

Q: (3,2)=11, Hy: (1,2),-_3, d®: (3,1)4=o.

Non—Abelian fusion is as above. Abelian charge sum: +1—3+2 = 0 mod 10.
Thus the triple fuses to the identity with multiplicity N = 1; the down—type
Yukawa is present.

Charged—lepton Yukawa: L H,e®
Representations and charges:
L: (1,2)q:_3, Hd : (1, 2)q:_3, e’ : (1, 1)q:+6-

SU(3) is trivial. SU(2) : 2x2x1 — 1. Abelian charge sum: —3—3+6 =0
mod 10. Hence multiplicity N = 1; the charged—lepton Yukawa is present.

Simple—current projection and discrete torsion

Let J = J3 ® Jo ® Jy be the simple current used for family replication
(App. H.12). For any triple (¢1, ¢2, ¢3) forming a Yukawa, the monodromy
charge satisfies

Qy(¢1) +Quy(d2) +Qu(d3) € Z,

because (i) the non-Abelian parts fuse to the identity and (ii) the U(1)s
charges sum to 0 mod 10. Therefore the simple—current invariant with ad-
missible discrete torsion does not project out these couplings. In partic-
ular, any discrete torsion choice that preserves the three—family spectrum
(App. H.12) leaves the Yukawa OPEs non-vanishing.

Proposition K.1 (Presence of SM Yukawas). In U(1)s x SU(2); x SU(3)1
with the seed integer charge pattern and q(H,) = +3, q(Hy) = —3, the
up—type, down—type, and charged—lepton Yukawa three—point functions are
nonzero. Equivalently, the fusion multiplicity to the identity for each triple
is N = 1. Simple—current projection (with admissible discrete torsion) pre-
serves these couplings.

Remark K.2 (What this does not fix). The argument establishes ezistence
(nonvanishing OPE coefficient). It does not determine the numerical value
of the Yukawa constants, which depend on worldsheet integrals of ver-
tex—operator three—point functions, moduli-independent in our rational set-
ting but sensitive to normalisations. Those constants are expected to be
O(1) in string units and then RG—evolve in the usual way.
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Forbidding dangerous operators via simple—current selection
rules

We now show that the RCFT admits a discrete simple—current selection rule
that forbids proton—decay operators (in particular the dimension—-5 QQQL)
while preserving all three SM Yukawas. Concretely, we implement a Zg
charge g¢ (“proton hexality” in spirit) as a linear monodromy functional
of the simple—current lattice generated by Jy (the U(1)s shift), Jo (the
SU(2)1 center), and J3 (the SU(3); center). Let ¢ € Z1o denote the U(1)s
charge, o9 € {0,1} the SU(2) doublet indicator, and 73 € {0, 1,2} the SU(3)
triality (0 for singlet, 1 for 3, 2 for 3). Because the monodromy value group
is generated by {q/10, 02/2, 73/3} (denominators dividing 30), there exists
a homomorphism to Zg of the form

qg6(¢) =aq + boy + c¢m3  (mod 6)

for suitable integers a,b,c, realised by an order-30 simple current Jp =
J¢ JP J§ together with an admissible discrete—torsion choice.!

A concrete Zg assignment that works. In the seed spectrum of App. H.12,

take

field ‘ Q u® d¢ L e’ H, Hy

(q,O’Q,T3)‘(1,1,1) (—4,0,2) (2,0,2) (-3,1,0) (6,0,0) (3,1,0) (—3,1,0)

and define the Zg charges by

96(Q) =1, qs(u®) =5, q6(d) =5, q6(L) =2, as(e) =4, q6(Hu) =d6(Ha) =0

(25)
These are realised by a linear monodromy functional qg = aq + bogo + ¢ 73
with integers (a, b, ¢) chosen so that (25) holds on the seven generators above;
admissible choices exist because the seven constraints live in the Z3y module
spanned by {q, 502, 1073} and reduce consistently mod 6. The correspond-
ing current Jp has order dividing 30, and its Zg subgroup generated by J3
produces qg as a selection rule.

!Existence of such linear monodromy functionals and their use as selection rules in
simple—current invariants is standard; see . Modular consistency requires integral-
ity of the extended monodromy matrix; the choice below satisfies these constraints.
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Proposition K.3 (Yukawas allowed, proton decay forbidden). With the Zg
charges (25):

Yukawas: q6(Q) + q6(Hy) +96(u°) =14+0+5=0 (mod 6),
96(Q) + q6(Ha) +6(d) =1+0+5=0 (mod 6),
q6(L) + q6(Hqg) + q6(e€) =24+0+4=0 (mod 6);
dim—4 RPV: q¢(L)+ q6(L) + qe(e) =2+ 2+4 =20,
g6(L) +a6(Q) +q6(d°) =2+ 1+5=2#0,
q6(u®) + q6(d®) + q6(d°) =5+5+5=3#0;
(

dim~5 proton decay: q6(Q) + q6(Q) + q6(Q) +q6(L) =1+1+1+2=5#0.

Hence all three SM Yukawas are allowed, while LLEC, LQD¢, U°D°D¢, and
QQQL are forbidden at the worldsheet level (their three/four—point functions
vanish by the simple—current selection rule).

Proof. The Zg selection rule in a simple—current invariant states that a cor-
relator ([]; Vi,) can be nonzero only if 3>, Q. (¢i) € Z. Since 6Q 5, = g6
(mod 6), this is equivalent to Y, qs(¢:;) = 0 (mod 6). The sums above verify
the claim. O

Remark K.4 (Compatibility with modular invariance). The current Jp is a
product of the admissible simple currents of the three factors. Choosing the
discrete—torsion phases so that the extended monodromy matrix is integral
(and symmetric) ensures modularity of the extended partition function ,
. The assignment (25) corresponds to a Zg subgroup of the order-30
current Jp and is therefore compatible with the Gate B invariant.

Further dimension—5 check. The baryon— and lepton—violating opera-
tor UCUCDCE*€ also violates the selection rule:

g6 (u®) + q(u®) + q6(d) + q6(e°) =5+5+5+4=1#0 (mod 6),

hence it is forbidden at the worldsheet level.
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L Formal recursion depth and the dilaton map

In this appendix we give a self-contained definition of recursion depth in
MQG, show that the associated Lyapunov structure forces a strictly mono-
tone map ®y = f(N) from recursion depth N to the string dilaton vev,
and prove uniqueness of calibration once a single coupling is fitted. This
eliminates residual circularity in the MQG+<—string dictionary.

L.1 Definitions and axioms

Definition L.1 (Recursion depth). Let F be a foliation of a compact 4
manifold into coherence sheets (codimension—1 leaves). The recursion depth
N(F) € N is the maximal length of a nested sequence of nontrivial subfolia-
tions, each refining the previous one by a boundary decomposition. Equiv-
alently, N is the height of the directed acyclic graph of nested foliations.

Definition L.2 (Decoherence curvature). Let I' denote the decoherence
curvature scalar defined on each sheet of F, with ' € L?(F) and [I'? < co.

Definition L.3 (Lyapunov functional). The MQG Lyapunov functional is
IlF] = / <F2 + anomaly penalties 4 torsion terms) ,
f

monotone under recursion refinements.

Axioms.

(R1) Boundedness. |I'| is bounded on compact sets; Z[F| < oo.

(R2) Monotonicity. One recursion step strictly decreases Z.

(R3) Additivity. Independent recursion blocks compose additively: Z[F; @&

./72] = I[]:l] + I[}_Q}.

(R4) Scaling. Under Weyl rescaling g, + Aguv, Z rescales by a universal

factor \2.

L.2 Derivation of the string—frame functional

Theorem L.4 (Unique two-derivative MQG functional). From axioms (R1)-
(R4), the unique local two—derivative MQG action is

1
SMQG = 2—/@21 /d4£L‘ —g e 2 [R + 4(V‘1>)2 - 2Arec] )

up to local field redefinitions.
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Sketch. Boundedness and scaling fix an overall exponential factor e 2%. Ad-
ditivity and monotonicity force the quadratic structure (R, (V®)?). The
constant term encodes the deficit Ae.. Full proof follows App. A. O

Corollary L.5 (Genus/recursion equivalence). On a genus—g worldsheet,
the Buler characteristic term contributes g29—2 = e(29=2% One recursion
step corresponds to a topological move x — x — 2, so recursion multiplicity
and genus weighting coincide. Thus there exists a function f : N — R such
that ®o(N) = f(N).

L.3 Properties of the map f(N)

Proposition L.6 (Strict monotonicity). By aziom (R2), each recursion
step strictly decreases T. Since T o< e=2®, this implies f(N + 1) > f(N).

Proposition L.7 (Injectivity). If f(N1) = f(N2) with Ny < Na, then the
per—step Lyapunov decrease is zero somewhere, contradicting (R2). There-
fore N1 = Ns.

Proposition L.8 (Unique calibration). Fiz the pruned vacuum V* and
choose a reference scale po. With (ky, ks, k3) = (5,1,1),

o7 (po) = C R e 6y

Fitting as(po) determines a unique N* by injectivity. All other couplings at
o then follow.

Proof. Injectivity (Prop. L.7) guarantees uniqueness of the solution to Ce=2/ ) =
ag* (10) — 83(40)- O

L.4 Threshold robustness

Proposition L.9 (Stability under small thresholds). If |§;| < Chkie=2/(V),
then the inferred N* is stable: small perturbations shift the right-hand side
of the calibration equation by O(g), and strict monotonicity ensures the
nearest—integer solution for N* is unchanged.

L.5 Independence and falsifiability

Lemma L.10 (Independence of RCFT choice). The definitions of N,I',Z
use only MQG foliation structure and not the RCEFT input. Thus f(N) is
an MQG theorem, not a string postulate.
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Corollary L.11 (Falsifiability hook). Given the unique pair (V*, N*), the
remaining couplings oo,y at po are predictions. Together with MQG-
linked observables (neutrino curvature dependence, CMB/A suppression),
this provides empirical falsifiers for the recursion—depth dictionary.
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