ARTPS: Depth-Enhanced Hybrid Anomaly Detection and Learnable Curiosity Score for Autonomous Rover Target Prioritization
Description
We present ARTPS (Autonomous Rover Target Prioritization System), a novel hybrid AI system that combines depth estimation, anomaly detection, and learnable curiosity scoring for autonomous exploration of planetary surfaces. Our approach integrates monocular depth estimation using Vision Transformers with multi-component anomaly detection and a weighted curiosity score that balances known value, anomaly signals, depth variance, and surface roughness.
The system achieves significant performance improvements with AUROC of 0.894, AUPRC of 0.847, and F1-Score of 0.823 on Mars rover datasets. We demonstrate enhanced target prioritization accuracy through ablation studies and provide comprehensive analysis of component contributions. The hybrid fusion approach reduces false positive rate to 0.089 while maintaining high detection sensitivity across diverse terrain types.
Key contributions include: (1) Integration of single-image depth estimation with anomaly detection, (2) Multi-component fusion strategy combining image and depth cues, (3) Learnable curiosity score balancing novelty and known value, (4) Comprehensive evaluation on Mars rover datasets, and (5) Real-time performance optimization for edge computing constraints.
This work advances autonomous scientific exploration by providing explainable target prioritization suitable for operator-in-the-loop workflows in planetary exploration missions.
Files
paper.pdf
Files
(15.9 MB)
Name | Size | Download all |
---|---|---|
md5:838b9fe624be752409291377c035876e
|
2.3 MB | Preview Download |
md5:f66a65feebd96c7d1cd7b3fed6f0ca10
|
175.3 kB | Preview Download |
md5:2bd3168bf4308bd669907758a63226d8
|
68.1 kB | Preview Download |
md5:02261a8bc3649b219127d7a457411f39
|
44.3 kB | Preview Download |
md5:690d67fbe50f067db80e87ddd3334f3e
|
1.1 MB | Preview Download |
md5:6a12c910f91cc5c2cb0b15ea4741036a
|
82.2 kB | Preview Download |
md5:2a53e6225b1f9c655c13299b90835099
|
78.2 kB | Preview Download |
md5:2c559190a52e464094ce1339893acf8f
|
545.9 kB | Preview Download |
md5:1ba0c4c9c3d9bc2b5aa8dca8eb07c66d
|
2.1 MB | Preview Download |
md5:e9c28f4be1aa34e282804814bd173ed1
|
162.7 kB | Preview Download |
md5:85807928a068f2480aacbba8cdfea536
|
335.4 kB | Preview Download |
md5:6be5b3007998a2bb738b084695e01999
|
8.7 MB | Preview Download |
md5:0307ceca3b8e5583ef2fa577a4822d30
|
28.8 kB | Download |
md5:56b0b2ce67ced2d445c049854a16333a
|
206.7 kB | Preview Download |
Additional details
Related works
- Is published in
- Preprint: 10.13140/RG.2.2.12215.18088 (DOI)
Dates
- Issued
-
2025-08-25
Software
- Programming language
- Python
- Development Status
- Active
References
- Defard, T., Levkovitch, A., Emonet, B., & Sebban, M. (2021). PaDiM: a Patch Distribution Modeling Framework for Efficient Anomaly Detection and Localization. ICPR, 475–482.
- Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., & Gehler, P. (2021). Towards Total Recall in Industrial Anomaly Detection. CVPR, 14318–14328.
- Dosovitskiy, A., et al. (2021). An Image is Worth 16x16 Words. ICLR
- Ranftl, R., et al. (2020). Towards Robust Monocular Depth Estimation. TPAMI, 44(3), 1623-1637
- Liu, Z., et al. (2021). Swin Transformer. ICCV, 10012–10022.
- Zhang, Y., et al. (2019). Residual Learning of Deep CNN for Image Denoising. TIP, 26(7), 3142–3155
- Wang, X., et al. (2018). ESRGAN. ECCV, 63–79.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning. CVPR, 770–778
- Ronneberger, O., et al. (2015). U-Net. MICCAI, 234–241
- Kingma, D. P., & Ba, J. (2014). Adam. arXiv:1412.6980
- Liu, W., et al. (2016). SSD. ECCV, 21–37
- Redmon, J., et al. (2016). YOLO. CVPR, 779–788
- Chen, L. C., et al. (2017). DeepLab. TPAMI, 40(4), 834–848
- Zhang, H., et al. (2018). mixup. ICLR.
- Devlin, J., et al. (2018). BERT. arXiv:1810.04805
- Vaswani, A., et al. (2017). Attention is All you Need. NeurIPS, 5998–6008
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436–444
- Goodfellow, I., et al. (2014). GAN. NeurIPS, 2672–2680
- Hochreiter, S., & Schmidhuber, J. (1997). LSTM. Neural Computation, 9(8), 1735–1780
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Back-Propagation. Nature, 323(6088), 533–536
- NASA Planetary Data System (2023). Imaging Atlas. https://pds-imaging.jpl.nasa.gov/
- Mars Science Laboratory (2023). Curiosity Rover Mission Data. JPL
- Mars 2020 Mission (2023). Perseverance Rover Mission Data. JPL
- Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal.
- Paszke, A., et al. (2019). PyTorch. NeurIPS, 8024–8035.
- Streamlit Inc. (2023). Streamlit. https://streamlit.io