Published July 25, 2025 | Version 1.0
Journal Open

ARTPS: Depth-Enhanced Hybrid Anomaly Detection and Learnable Curiosity Score for Autonomous Rover Target Prioritization

  • 1. ROR icon Selçuk University

Description

We present ARTPS (Autonomous Rover Target Prioritization System), a novel hybrid AI system that combines depth estimation, anomaly detection, and learnable curiosity scoring for autonomous exploration of planetary surfaces. Our approach integrates monocular depth estimation using Vision Transformers with multi-component anomaly detection and a weighted curiosity score that balances known value, anomaly signals, depth variance, and surface roughness.

The system achieves significant performance improvements with AUROC of 0.894, AUPRC of 0.847, and F1-Score of 0.823 on Mars rover datasets. We demonstrate enhanced target prioritization accuracy through ablation studies and provide comprehensive analysis of component contributions. The hybrid fusion approach reduces false positive rate to 0.089 while maintaining high detection sensitivity across diverse terrain types.

Key contributions include: (1) Integration of single-image depth estimation with anomaly detection, (2) Multi-component fusion strategy combining image and depth cues, (3) Learnable curiosity score balancing novelty and known value, (4) Comprehensive evaluation on Mars rover datasets, and (5) Real-time performance optimization for edge computing constraints.

This work advances autonomous scientific exploration by providing explainable target prioritization suitable for operator-in-the-loop workflows in planetary exploration missions.

Files

paper.pdf

Files (15.9 MB)

Name Size Download all
md5:838b9fe624be752409291377c035876e
2.3 MB Preview Download
md5:f66a65feebd96c7d1cd7b3fed6f0ca10
175.3 kB Preview Download
md5:2bd3168bf4308bd669907758a63226d8
68.1 kB Preview Download
md5:02261a8bc3649b219127d7a457411f39
44.3 kB Preview Download
md5:690d67fbe50f067db80e87ddd3334f3e
1.1 MB Preview Download
md5:6a12c910f91cc5c2cb0b15ea4741036a
82.2 kB Preview Download
md5:2a53e6225b1f9c655c13299b90835099
78.2 kB Preview Download
md5:2c559190a52e464094ce1339893acf8f
545.9 kB Preview Download
md5:1ba0c4c9c3d9bc2b5aa8dca8eb07c66d
2.1 MB Preview Download
md5:e9c28f4be1aa34e282804814bd173ed1
162.7 kB Preview Download
md5:85807928a068f2480aacbba8cdfea536
335.4 kB Preview Download
md5:6be5b3007998a2bb738b084695e01999
8.7 MB Preview Download
md5:0307ceca3b8e5583ef2fa577a4822d30
28.8 kB Download
md5:56b0b2ce67ced2d445c049854a16333a
206.7 kB Preview Download

Additional details

Related works

Is published in
Preprint: 10.13140/RG.2.2.12215.18088 (DOI)

Dates

Issued
2025-08-25

Software

Programming language
Python
Development Status
Active

References

  • Defard, T., Levkovitch, A., Emonet, B., & Sebban, M. (2021). PaDiM: a Patch Distribution Modeling Framework for Efficient Anomaly Detection and Localization. ICPR, 475–482.
  • Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., & Gehler, P. (2021). Towards Total Recall in Industrial Anomaly Detection. CVPR, 14318–14328.
  • Dosovitskiy, A., et al. (2021). An Image is Worth 16x16 Words. ICLR
  • Ranftl, R., et al. (2020). Towards Robust Monocular Depth Estimation. TPAMI, 44(3), 1623-1637
  • Liu, Z., et al. (2021). Swin Transformer. ICCV, 10012–10022.
  • Zhang, Y., et al. (2019). Residual Learning of Deep CNN for Image Denoising. TIP, 26(7), 3142–3155
  • Wang, X., et al. (2018). ESRGAN. ECCV, 63–79.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning. CVPR, 770–778
  • Ronneberger, O., et al. (2015). U-Net. MICCAI, 234–241
  • Kingma, D. P., & Ba, J. (2014). Adam. arXiv:1412.6980
  • Liu, W., et al. (2016). SSD. ECCV, 21–37
  • Redmon, J., et al. (2016). YOLO. CVPR, 779–788
  • Chen, L. C., et al. (2017). DeepLab. TPAMI, 40(4), 834–848
  • Zhang, H., et al. (2018). mixup. ICLR.
  • Devlin, J., et al. (2018). BERT. arXiv:1810.04805
  • Vaswani, A., et al. (2017). Attention is All you Need. NeurIPS, 5998–6008
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436–444
  • Goodfellow, I., et al. (2014). GAN. NeurIPS, 2672–2680
  • Hochreiter, S., & Schmidhuber, J. (1997). LSTM. Neural Computation, 9(8), 1735–1780
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Back-Propagation. Nature, 323(6088), 533–536
  • NASA Planetary Data System (2023). Imaging Atlas. https://pds-imaging.jpl.nasa.gov/
  • Mars Science Laboratory (2023). Curiosity Rover Mission Data. JPL
  • Mars 2020 Mission (2023). Perseverance Rover Mission Data. JPL
  • Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal.
  • Paszke, A., et al. (2019). PyTorch. NeurIPS, 8024–8035.
  • Streamlit Inc. (2023). Streamlit. https://streamlit.io