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Abstract

We present ARTPS (Autonomous Rover Target Prioritization System), an integrated system
for on-site prioritization of scientifically interesting targets in autonomous planetary exploration.
ARTPS combines single-image depth estimation with multi-component anomaly fusion derived
from both image and depth cues, engineering-driven target localization, and a learnable curios-
ity score that ranks candidate targets. The system increases sensitivity to small and near-field
objects while preserving details over distant regions. Operational nuisances typical to field en-
vironments such as shadows, specularities, and low-texture surfaces are mitigated by combining
morphological and photometric indicators.

The system is designed for edge-compute constraints, respecting memory/energy budgets,
timing requirements, and communication latency. The image processing and depth enhance-
ment stages are parametric and can be fine-tuned to site-specific conditions via the user inter-
face. Outputs are explainable by design: numbered regions on the combined anomaly map
are matched one-to-one with metrics in the diagnostic panel, enabling transparent operator
decisions.

The learnable curiosity score is a normalized combination of known value, reconstruction
difference, combined anomaly density, depth variance, and roughness, calibrated via regu-
larized learning. We evaluate anomaly discrimination (AUROC/AUPRC), depth estimation
(relative error, RMSE, MAE, log10, threshold accuracy), and ranking quality (nDCG, Spear-
man, Kendall). Results demonstrate improved small-near sensitivity, preserved far-field detail,
and reduced false alarms due to shadow/specular suppression. We provide methodological
details, ablations, and implementation guidance to support reproducibility.

1 Introduction
Selecting and prioritizing scientific targets under tight bandwidth and latency constraints is a core
challenge in planetary exploration. Delayed and intermittent ground communication necessitates
higher onboard autonomy for exploration platforms. ARTPS (Autonomous Rover Target Prioritiza-
tion System) addresses this need by integrating perception signals into a consistent decision pipeline
that balances scientific value with operational budgets, while remaining robust to environmental
variability.

Key objectives are: (i) high sensitivity to small and nearby objects, (ii) preservation of detail in
distant regions, (iii) suppression of shadows/specularities and low-texture artifacts, (iv) explainable
outputs for operator trust, and (v) efficient execution on constrained hardware.

2 Related Work
Monocular depth estimation: Transformer-based encoder–decoder architectures with edge-guided
refinement, fast global smoothing, and weighted-median filtering improve geometric consistency
and fine detail. Domain gaps stemming from photometric inconsistency and perspective variation
require careful adaptation.

Industrial visual anomaly detection: Reconstruction-based methods (autoencoders), feature-
statistics methods (patch-wise multivariate modeling), and memory/nearest-neighbor approaches
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are frequently adopted. Multi-scale gradient, Laplacian, and Difference-of-Gaussians emphasize
detail while suppressing spurious indicators from shadows and specularity.

Multi-cue fusion: Weighted combination of normalized image/depth components, shadow/specular
suppression, and hysteresis thresholding are effective. Localization commonly uses rotated rectan-
gles, IoU-based suppression, and box merging.

Curiosity-driven exploration: Learnable rankers that balance known value and novelty/anomaly
signals can improve expected discovery utility, especially when coupled with uncertainty and ex-
plainability indicators.

3 Method
The ARTPS pipeline is modular and deployable on edge devices. It comprises input enhancement,
single-image depth estimation, multi-component anomaly fusion, localization and box merging,
and a learnable curiosity score.

3.1 System Architecture and Software Design
The architecture has three layers: (i) data processing (image enhancement, depth estimation), (ii)
analysis (anomaly detection, fusion), (iii) decision (curiosity score, localization). Each layer is
independently testable and profiled for memory footprint, runtime, and numerical stability. The
implementation uses Python with PyTorch and OpenCV, and a Streamlit demo UI; the main
application runs locally for performance.

Layer Components Technology Output
Data Processing Image Enhancement OpenCV, PIL Enhanced Image

Depth Estimation PyTorch, ViT Depth Map
Analysis Anomaly Detection PaDiM, Autoencoder Anomaly Maps

Fusion Weighted Fusion Combined Map
Decision Curiosity Score MLP, Ridge Regression Priority Score

Localization OpenCV, NMS Bounding Boxes

Table 1: ARTPS system architecture overview

3.2 Input Enhancement
Given an RGB image 𝐼 ∈ R𝐻×𝑊×3, we apply: bicubic resizing to (𝐻′,𝑊′); bilateral filtering for
edge-preserving denoising; CLAHE for local contrast enhancement; gamma correction; and light
unsharp masking. Shadow/specular indicators are computed in luminance and saturation channels
to aid fusion. Concretely:

1. Resizing to target resolution (𝐻′,𝑊′) with bicubic interpolation:

𝐼′ = resize
(
𝐼, (𝐻′,𝑊′),method=bicubic

)
.
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2. Edge-preserving bilateral filter:

𝐼denoised(𝑝) =
1
𝑊𝑝

∑︁
𝑞∈N (𝑝)

𝐼 (𝑞) 𝑤𝑠 (𝑝, 𝑞) 𝑤𝑟
(
𝐼 (𝑝), 𝐼 (𝑞)

)
.

3. CLAHE-based local contrast enhancement:

𝐼enhanced(𝑝) = CLAHE
(
𝐼denoised(𝑝); clip_limit = 2.0, tile_grid = (8, 8)

)
.

4. Adaptive gamma correction using mean intensity 𝜇𝐼 :

𝛾 =
log(0.5)

log(𝜇𝐼 + 𝜀)
, 𝐼𝛾 (𝑝) = 𝐼enhanced(𝑝)𝛾 .

(a) Raw/hazy input (b) Dehazing + enhancement

Figure 1: Input enhancement clarifies rover vs surface separation before fusion.

3.3 Single-Image Depth Estimation
We adopt a ViT-style encoder–decoder. With patch embeddings and multi-head attention, the
decoder produces a depth map 𝐷 ∈ R𝐻×𝑊 . A typical formulation is

𝐸 = PatchEmbed(𝐼) + PositionalEncoding, Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉,

MultiHead(𝑄, 𝐾,𝑉) = Concat(head1, . . . , headℎ)𝑊𝑂 , FFN(𝑥) = 𝑊2 ReLU(𝑊1𝑥 + 𝑏1) + 𝑏2.

Post-processing includes: edge-guided filtering

𝐸′
𝐷 (𝑝) = 𝐸𝐷 (𝑝) exp

(
− 𝛼 ∥𝐸𝐼 (𝑝)∥2

)
,

fast global smoothing via a Poisson model ∇2𝐷′ = ∇ · ∇𝐷, and weighted-median filtering to
preserve edges.
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(a) Raw scene with far-field details and small near objects

↓

(b) Hybrid anomaly-fusion process

Figure 2: From raw input (a) to hybrid fusion stages (b): AE difference, image cues, and depth
discontinuities.
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(a) Raw image (b) Depth analysis and discontinuities

Figure 3: (a) Raw image used for depth analysis. (b) Depth gradient and surface rupture indicators.

3.4 Multi-Component Anomaly Fusion
We combine: reconstruction differences from an autoencoder, image-based texture/edge cues (gra-
dients, multi-scale Laplacian, DoG) with shadow/specular suppression, depth-based discontinuities
(depth gradient/Laplacian), and optionally feature-statistics signals (e.g., PaDiM, PatchCore). Com-
ponents are normalized to [0, 1] and fused via a weighted sum

𝐴combined(𝑝) =
𝑁∑︁
𝑖=1

𝑤𝑖 𝐴
′
𝑖 (𝑝), 𝐴′𝑖 (𝑝) =

𝐴𝑖 (𝑝) − min 𝐴𝑖
max 𝐴𝑖 − min 𝐴𝑖

.

Hysteresis thresholding and morphology produce candidate regions; confidences are reweighted by
component consistency and depth–topography alignment.
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(a) Large boulders (b) Rock pile

Figure 4: Different target classes emphasized by anomaly components.

(a) Raw scene (b) Depth + anomaly overlay

Figure 5: Robustness of multi-component fusion illustrated on ripples and outcrops.

Shadow and specular suppression terms use luminance 𝐿 and saturation 𝑆 channels:

𝐴shadow(𝑝) = exp

(
− (𝐿 (𝑝) − 𝜇𝐿)2

2𝜎2
𝐿

)
, 𝐴specular(𝑝) = exp

(
− (𝑆(𝑝) − 𝜇𝑆)2

2𝜎2
𝑆

)
.
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For PaDiM-like feature statistics, the Mahalanobis distance is

𝑀 (𝑝) =
√︃(

𝑓𝑝 − 𝜇
)𝑇

Σ−1 (
𝑓𝑝 − 𝜇

)
.

Autoencoder reconstruction error is

𝐸recon(𝑝) = ∥𝐼 (𝑝) − 𝐼 (𝑝)∥2.

3.5 Localization and Box Merging
Contours yield axis-aligned and rotated bounding-box hypotheses. Non-maximum suppression
(IoU-based) and geometric merging consolidate boxes. Specifically:

𝐶 = Canny
(
𝐴combined, 𝜏low, 𝜏high

)
, 𝐵 = minAreaRect(𝐶),

IoU(𝐵𝑖, 𝐵 𝑗 ) =
|𝐵𝑖 ∩ 𝐵 𝑗 |
|𝐵𝑖 ∪ 𝐵 𝑗 |

, 𝑑 (𝐵𝑖, 𝐵 𝑗 ) = ∥𝑐𝑖 − 𝑐 𝑗 ∥2.

This produces a compact set of candidate targets with consistent geometry.

(a) Raw image (b) Combined anomaly detection

Figure 6: Localization and box merging illustrated with sand–rock configurations.

3.6 Learnable Curiosity Score
The score balances: known value (classifier confidence), reconstruction difference, combined
anomaly density, depth variance, and roughness. Let normalized components be 𝑥_𝑘; we learn
nonnegative weights 𝛼_𝑘 via regularized regression and compute

𝐶 =
∑︁

_𝑘𝛼_𝑘 𝑥_𝑘, 𝛼_𝑘 ≥ 0.
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Rank-based metrics (nDCG, Kendall, Spearman) guide selection of regularization and feature
scaling. Per-region components can be written as

𝑆known(𝑟) =
1
|𝑟 |

∑︁
𝑝∈𝑟

𝑃classifier(𝑝), (1)

𝑆recon(𝑟) =
1
|𝑟 |

∑︁
𝑝∈𝑟

∥𝐼 (𝑝) − 𝐼 (𝑝)∥2, (2)

𝑆anom(𝑟) =
1
|𝑟 |

∑︁
𝑝∈𝑟

𝐴combined(𝑝), (3)

𝜎2
depth(𝑟) =

1
|𝑟 |

∑︁
𝑝∈𝑟

(
𝐷 (𝑝) − 𝐷̄𝑟

)2
, (4)

𝑅rough(𝑟) =
1
|𝑟 |

∑︁
𝑝∈𝑟

∥∇𝐷 (𝑝)∥2. (5)

3.7 Explainability and Uncertainty
We provide per-region diagnostics (component scores, overlaps) and uncertainty indicators tied
to low-texture areas, intensity extremes, and depth discontinuity confidence. This supports safe
operation and operator trust. Uncertainty is computed as

𝑈 (𝑟) =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
𝑆𝑖 (𝑟) − 𝑆(𝑟)

)2
,

where 𝑆𝑖 (𝑟) is the 𝑖-th component score and 𝑆(𝑟) is their mean in region 𝑟. High uncertainty values
are visually emphasized to draw operator attention.

4 Experimental Setup and Implementation

4.1 Dataset and Preprocessing
We use NASA PDS Mars rover imagery (Curiosity/Perseverance). A total of 2,847 images are split
as follows: Curiosity (Mastcam): 1,247 images (Sol 100–1700), Perseverance (Mastcam-Z): 892
images (Sol 1–400), and 708 images for testing/validation under diverse conditions. Preprocessing
includes resolution equalization, denoising, CLAHE, and gamma correction. Depth is estimated
per frame with TTA and the post-processing outlined above.

Images span resolutions from 640×480 to 1920×1080. Illumination varies (solar elevation
15°–75°). Surface roughness ranges from flat sand to rocky outcrops. The dataset is balanced for
shadow/contrast diversity and topographic variation.

4.2 Benchmark Protocol and Comparison
We adopt consistent train/validation/test splits, fixed random seeds, and identical augmentations
for methods under comparison. Thresholds for binarization are selected on validation data, and
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evaluation is reported on the held-out test set. Runtime and memory profiles are measured on the
same hardware and software stack.

4.3 Optimization and Hyperparameters
Hyperparameters for anomaly fusion weights, thresholding, morphology, and curiosity-score regu-
larization are tuned via grid search with early stopping on validation metrics (nDCG for ranking;
AUROC/AUPRC for anomaly detection). Mixed-precision is enabled when it provides a clear
throughput benefit without accuracy degradation.

4.4 Software and System Architecture
Python, PyTorch, OpenCV, NumPy, and Pandas form the core stack. Streamlit serves as a demo UI;
the primary application runs locally for performance and edge constraints. Modules are profiled
for runtime and memory; mixed-precision is used when beneficial.

4.5 Metrics and Evaluation
Anomaly detection: AUROC, AUPRC, F1, FPR. Depth: RelAbs, RMSE, MAE, log10, 𝛿-accuracy.
Ranking: nDCG, Spearman 𝜌, Kendall 𝜏. Benchmarks use consistent protocols and splits; hyper-
parameters are tuned with held-out validation.

4.5.1 Anomaly Detection Metrics

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2
Precision · Recall
Precision + Recall

, FPR =
FP

FP + TN
(6)

4.5.2 Depth Estimation Metrics

RAE =
1
𝑁

𝑁∑︁
𝑖=1

|𝑑𝑖 − 𝑑𝑖 |
𝑑𝑖

(7)

RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑑𝑖 − 𝑑𝑖)2 (8)

MAE =
1
𝑁

𝑁∑︁
𝑖=1

|𝑑𝑖 − 𝑑𝑖 | (9)

Log10 =
1
𝑁

𝑁∑︁
𝑖=1

| log10 𝑑𝑖 − log10 𝑑𝑖 | (10)

Threshold accuracy counts the fraction where max(𝑑𝑖/𝑑𝑖, 𝑑𝑖/𝑑𝑖) < 𝛿.
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4.5.3 Curiosity Ranking Metrics

DCG@k =

𝑘∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2(𝑖 + 1) (11)

nDCG@k =
DCG@k
IDCG@k

(12)

4.5.4 Mathematical Formula Details

We use the above definitions consistently across all experiments and report confidence intervals
where applicable.

5 Ablation and Sensitivity
We analyze contributions of (i) depth post-processing, (ii) shadow/specular suppression, (iii) ad-
vanced anomaly signals, (iv) curiosity-weight regularization. We report changes in AUROC/AUPRC
and nDCG@K.

• Depth post-processing: Removing edge-guided filtering and global smoothing reduces
AUROC and increases false positives on low-texture surfaces.

• Shadow/specular suppression: Disabling luminance/saturation-based suppression increases
false alarms in high-contrast regions.

• Advanced anomaly signals: Excluding feature-statistics cues (e.g., PaDiM/PatchCore)
yields lower separation on textured rocks.

• Curiosity regularization: Stronger regularization may stabilize ranking at the expense of
sensitivity to rare targets; we report the trade-off curves.

6 Results and Analysis
ARTPS improves AUROC and AUPRC on diverse terrains while reducing false alarms in shad-
owed/specular regions. Depth-aided cues enhance small-near object sensitivity without sacrificing
far-field detail. Ranking metrics confirm better prioritization aligned with expert judgments.

6.1 General Performance Results
Comparative summaries:
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Metric ARTPS Baseline 1 Baseline 2 Baseline 4
AUROC 0.894 0.723 0.781 0.856
AUPRC 0.847 0.645 0.698 0.812
F1-Score 0.823 0.612 0.689 0.794
False Positive Rate 0.089 0.234 0.187 0.134

Table 2: Anomaly detection performance comparison

Metric ARTPS Baseline Improvement
RAE 0.156 0.234 33.3%
RMSE 0.189 0.287 34.1%
MAE 0.134 0.198 32.3%
Log10 Error 0.089 0.145 38.6%
𝛿 < 1.25 89.4% 76.8% +12.6%
𝛿 < 1.252 97.8% 89.2% +8.6%
𝛿 < 1.253 99.2% 95.7% +3.5%

Table 3: Depth estimation performance comparison

6.2 Component Contribution Analysis
• Depth Estimation: AUROC 0.894 → 0.812 (=9.2%)

• Image Enhancement: AUROC 0.894 → 0.856 (=4.2%)

• Anomaly Fusion: AUROC 0.894 → 0.743 (=16.9%)

• Curiosity Score: nDCG 0.912 → 0.678 (=25.7%)

6.3 Performance Under Field Conditions
• Low Texture: AUROC 0.867, FPR 0.112

• High Contrast: AUROC 0.912, FPR 0.067

• Shadow-Dense: AUROC 0.843, FPR 0.134

• Far Field: AUROC 0.789, FPR 0.198

6.4 Hardware Performance Profile
Real-time constraints are met; fusion of advanced anomaly maps increases memory usage but is
guarded by profile-aware fallbacks.
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Metric ARTPS Baseline Improvement
nDCG@5 0.945 0.712 +23.3%
nDCG@10 0.912 0.734 +17.8%
nDCG@20 0.878 0.689 +18.9%
Spearman Correlation 0.847 0.623 +22.4%
Kendall’s Tau 0.689 0.456 +23.3%

Table 4: Curiosity-score ranking performance comparison

6.5 Detailed Performance Summaries
Depth performance details:

• RAE: 0.156 (ARTPS) vs 0.234 (baseline)

• RMSE: 0.189 (ARTPS) vs 0.287 (baseline)

• Threshold Accuracy: 89.4% (𝛿 < 1.25) vs 76.8% (baseline)

Curiosity ranking details:

• nDCG@10: 0.912 (ARTPS) vs 0.734 (baseline)

• Spearman: 0.847 vs 0.623

• Kendall’s Tau: 0.689 vs 0.456

7 Limitations and Future Work
Failure cases include extreme low-texture expanses and overexposed regions. Future efforts target
tighter uncertainty integration into the curiosity score, broader multimodal fusion (e.g., spec-
tral/radar), and active exploration policies on edge devices with strict power budgets.

8 Safety, Reliability, and Operations

8.1 Security and Fault Tolerance
We implement input validation, bounds checking, and watchdog timers for long-running kernels.
Conservative thresholds and hysteresis are applied to reduce oscillations under noisy conditions.
Fallback modes degrade to core components when advanced cues are unavailable.

8.2 Reliability and Test Strategy
Unit and integration tests cover preprocessing, depth estimation interfaces, fusion, localization,
and scoring. Continuous integration enforces deterministic seeds and report generation. Code
coverage: core modules (enhancement, fusion, scoring) exceed 85% statement coverage; data-path
glue exceeds 70% with emphasis on edge cases.
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8.3 Operational Suitability and Field Readiness
We validate performance across temperature and illumination variations and simulate telemetry
latency. CCSDS-compliant telemetry packets and image compression profiles are considered.
Power-aware scheduling and batch sizing ensure operation within energy budgets.

9 Implementation Details

9.1 Software Architecture and Technical Details
The system is modular with clear interfaces between preprocessing, depth estimation, fusion,
localization, and scoring. PyTorch modules are wrapped with deterministic evaluation paths, and
OpenCV routines are isolated behind utility functions.

9.2 Performance Optimization
We use operator fusion where possible, minimize host–device transfers, and apply mixed precision
selectively. Memory usage is reduced via in-place operations and tiling for high-resolution frames.

9.3 User Interface and Experience
Streamlit provides a demonstration UI exposing parameters (weights, thresholds) and diagnostic
panels. Note: Streamlit is a demo; the main application runs locally (headless) for performance
and edge constraints.

9.4 Deployment and Installation
We provide environment files and scripts for CPU/GPU deployment. The pipeline can run on x86
workstations or embedded GPUs with adjusted batch sizes and precision.

9.5 Reproducibility and Open Science
The project is released under the MIT License with documentation, configuration files, and scripts
for end-to-end reproduction. We include data acquisition instructions and checkpoints where
licensing permits.

10 Conclusions

10.1 Key Contributions and Achievements
ARTPS integrates single-image depth with multi-component anomaly fusion and a learnable cu-
riosity score, improving AUROC/AUPRC and ranking quality while maintaining efficiency.
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10.2 Scientific and Technological Impact
The approach advances autonomous scientific exploration by balancing novelty and known value
and providing explainable diagnostics suitable for operator-in-the-loop workflows.

10.3 Industrial Application Potential
Beyond space missions, the pipeline applies to road-surface anomaly detection, industrial inspection,
environmental monitoring, and medical imaging scenarios with limited bandwidth and compute.

10.4 Future Directions
We aim to integrate uncertainty more tightly into scoring, extend to multimodal fusion, and develop
active exploration policies for edge compute.

10.5 Final Assessment
ARTPS offers a practical path toward more autonomous, reliable, and explainable prioritization in
planetary exploration under real operational constraints.
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