Gauge-Gravity Coupling in Manifold Quantum Gravity
Creators
Description
We show that gauge-gravity coupling in Manifold Quantum Gravity
arises directly from the Hessian expansion of the coherence functional.
The Einstein-Yang-Mills sector emerges in the infrared with Newton’s
constant, gauge couplings and the cosmological constant determined
internally by recursion geometry. Curvature-gauge mixing operators
appear automatically with fixed coefficients, giving rise to testable
signatures including curvature-dependent running of couplings, con-
finement scale modulation, birefringent lensing, gauge-wave energy ex-
change and the reinterpretation of the dark sector as modal potential.
In addition, the ultraviolet sector is ghost-free and complete: the Hes-
sian kernels generate entire nonlocal form factors, shown explicitly for
a Gaussian regulator, and the results are independent of the chosen
representation of the coherence functional. This establishes MQG as a
variational framework in which both infrared and ultraviolet behaviour
are coherently controlled, with no free counter-terms or hidden sectors.
Files
Gauge_Gravity_Coupling_in_Manifold_Quantum_Gravity-v1.2.pdf
Files
(588.1 kB)
Name | Size | Download all |
---|---|---|
md5:6c3f721236fd65db21f221ea570953b9
|
489.0 kB | Preview Download |
md5:03b650d3709d80067540db4bf2304915
|
99.1 kB | Download |
Additional details
Related works
- Continues
- Preprint: 10.5281/zenodo.16854925 (DOI)
- Preprint: 10.5281/zenodo.16374596 (DOI)
Dates
- Created
-
2025-08-23Preprint
References
- 1 J. D. Coulson, "Manifold Quantum Gravity: From First Principles to Cosmic Phenomena," Zenodo Preprint (2025). DOI: 10.5281/zen- odo.16214915. 2 J. D. Coulson, "Emergence of the Gauge Sector in Manifold Quantum Gravity," Zenodo Preprint (2025). DOI: 10.5281/zenodo.16374596. 3 R. M. Wald, General Relativity, University of Chicago Press (1984). 4 S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison–Wesley (2004). 5 L. E. Parker and D. J. Toms, Quantum Field Theory in Curved Space- time, Cambridge University Press (2009). 6 I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, Effective Action in Quantum Gravity, IOP Publishing (1992). 7 I. T. Drummond and S. J. Hathrell, "QED vacuum polarization in a background gravitational field and its effect on the velocity of pho- tons," Phys. Rev. D 22 (1980) 343–355. DOI: 10.1103/PhysRevD.22.343. 8 G. M. Shore, "Quantum gravitational optics," Contemp. Phys. 44 (2003) 503–521; arXiv:gr-qc/0304059. 9 M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press (1995). 10 S. Weinberg, "A Model of Leptons," Phys. Rev. Lett. 19 (1967) 1264– 1266. 11 A. Connes, Noncommutative Geometry, Academic Press (1994). 12 A. Connes and J. Lott, "Particle models and noncommutative geom- etry," Nucl. Phys. Proc. Suppl. 18B (1991) 29–47; A. Connes, "Noncommutative geometry and reality," J. Math. Phys. 36 (1995) 6194–6231. 13 A. H. Chamseddine, A. Connes and M. Marcolli, "Gravity and the standard model with neutrino mixing," Adv. Theor. Math. Phys. 11 (2007) 991–1089; arXiv:hep-th/0610241. 14 P. B. Gilkey, Asymptotic Formulae in Spectral Geometry, Chapman & Hall/CRC (2004). 15 D. V. Vassilevich, "Heat kernel expansion: user's manual," Phys. Rept. 388 (2003) 279–360; arXiv:hep-th/0306138. 16 S. Amari and H. Nagaoka, Methods of Information Geometry, Transla- tions of Mathematical Monographs vol. 191, American Mathematical Society (2000). 17 C. Caticha, "Entropic dynamics: an inference approach to quantum theory, time and measurement," Entropy 22 (2020) 908; arXiv:1908.04693. 18 Planck Collaboration: N. Aghanim et al., "Planck 2018 results. VI. Cosmological parameters," Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209].