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Abstract

We show that gauge-gravity coupling in Manifold Quantum Gravity
arises directly from the Hessian expansion of the coherence functional.
The Einstein-Yang-Mills sector emerges in the infrared with Newton’s
constant, gauge couplings and the cosmological constant determined
internally by recursion geometry. Curvature-gauge mixing operators
appear automatically with fixed coefficients, giving rise to testable
signatures including curvature-dependent running of couplings, con-
finement scale modulation, birefringent lensing, gauge-wave energy ex-
change and the reinterpretation of the dark sector as modal potential.
In addition, the ultraviolet sector is ghost-free and complete: the Hes-
sian kernels generate entire nonlocal form factors, shown explicitly for
a Gaussian regulator, and the results are independent of the chosen
representation of the coherence functional. This establishes MQG as a
variational framework in which both infrared and ultraviolet behaviour
are coherently controlled, with no free counter-terms or hidden sectors.

1



Contents
1 Introduction 3

2 Foundations 4
2.1 Axioms and assumptions . . . . . . . . . . . . . . . . . . . . . 4
2.2 Projectors and inner product . . . . . . . . . . . . . . . . . . 5
2.3 Infrared action from the Hessian . . . . . . . . . . . . . . . . 5
2.4 Ultraviolet behaviour and equivalence of representations . . . 6
2.5 Equivalence of background realisations . . . . . . . . . . . . . 7

3 Gauge-Gravity Coupling: Formal Derivation 13
3.1 Electroweak scale from SU(2) stability . . . . . . . . . . . . . 13
3.2 Emergence of U(1) coupling from curvature projection . . . . 15

3.2.1 Projection formulas for curvature–gauge mixing coef-
ficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Gauge fields as curvature fluctuations . . . . . . . . . . . . . 18
3.4 Consistency with the Einstein equations . . . . . . . . . . . . 19

4 Corrections and predictions 21

5 Discussion 26

6 Conclusion 29

A Positivity of the spectral measure 30
A.1 Setup and definitions . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.3 Proof of Theorem A.1 . . . . . . . . . . . . . . . . . . . . . . 31

B Mixing coefficients on curved manifolds 35
B.1 Setup and operator class . . . . . . . . . . . . . . . . . . . . . 35
B.2 Heat kernel and curvature expansion . . . . . . . . . . . . . . 35
B.3 Tensor basis and projection . . . . . . . . . . . . . . . . . . . 36
B.4 Universal a3 tensor structures and projection . . . . . . . . . 37
B.5 Background triad for algebraic extraction of τi . . . . . . . . 37
B.6 Example: minimal Laplace–type operator on the adjoint bundle 38
B.7 Field redefinitions and removal of derivative terms . . . . . . 39
B.8 Summary of Appendix B . . . . . . . . . . . . . . . . . . . . . 39

References 41

2



1 Introduction
The unification of gauge and gravitational interactions remains a central
problem in fundamental physics. While general relativity provides a geo-
metric description of spacetime curvature 3 , 4 and the Standard Model
accounts for the gauge sector, their direct coupling is usually introduced via
minimal substitution in the action. Beyond this, effective field theory argu-
ments predict higher–order curvature gauge terms suppressed by the Planck
scale 6 , 5 , 8 , but these lack a derivation from first principles.

Manifold Quantum Gravity (MQG) offers such a derivation. Building on
the recursive decoherence framework introduced in 1 , and the emergence of
the full U(1)×SU(2)×SU(3) gauge sector demonstrated in 2 , the present
work develops the gauge–gravity interface. Specifically, we show that the
second variation of the recursion functional induces curvature–dependent
gauge terms of the schematic form

∆L ∼ α1RF
2 + α2RµνF

µλF ν
λ + α3CµνρσF

µνF ρσ, (1)

with calculable coefficients αi set by the recursion Hessian.
The operators in (1) form a complete gauge– and diffeomorphism–invariant

basis at dimension six for quadratic curvature–gauge couplings, up to total
derivatives 6 , 5 .

These terms are not inserted ad hoc but emerge uniquely once gauge
fields are projected from recursion geometry. Their presence implies spe-
cific phenomenology: curvature–dependent running of couplings, confine-
ment scale modulation, polarisation–dependent lensing, energy exchange
with gravitational waves and a structural reinterpretation of the dark sector
in terms of modal potential.

The goal of this paper is twofold: (i) to present a rigorous derivation of
gauge–gravity coupling within MQG, and (ii) to identify the resulting obser-
vational signatures, highlighting the predictive fingerprint that distinguishes
MQG from both effective field theory extensions and quantum gravity can-
didates based on new fundamental constituents.

This work forms part of a sequence of studies developing Manifold Quan-
tum Gravity (MQG). An initial formulation established the coherence func-
tional and its variational role in unifying geometry and gauge dynamics 1 ,
followed by a focused analysis of gauge sector emergence from the recursion
Hessian 2 . The present paper extends that programme to include explicit
gauge-gravity coupling. All necessary definitions are repeated here, so the
results are self-contained, but the earlier works provide broader context on
recursion geometry and the coherence functional framework.
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2 Foundations
We begin by making the geometric sector of Manifold Quantum Gravity
(MQG) dynamical, promoting the foliation layer from a fixed background
to a fluctuating configuration. The fundamental fields are collected into the
configuration

Φ ≡
(
gµν , Ψ, W a

µ

)
, a ∈ g = u(1) ⊕ su(2) ⊕ su(3), (2)

where gµν is the spacetime metric, Ψ the modal scalar field encoding recur-
sive coherence and W a

µ the gauge connections associated with the Standard
Model gauge group. The corresponding curvature is

F a
µν = ∂µW

a
ν − ∂νW

a
µ + fa

bcW
b
µW

c
ν , (3)

with fa
bc the structure constants of g.

2.1 Axioms and assumptions

The coherence functional C[Φ] is the variational object defining MQG 1 .
We impose three axioms which suffice to determine the infrared (IR) expan-
sion:

(A1) C[Φ] is invariant under spacetime diffeomorphisms and local G gauge
transformations.

(A2) At a stationary background Φ⋆ = (g⋆,Ψ⋆,W⋆ = 0), the Hessian

H ≡ δ2C
δΦ δΦ

∣∣∣∣∣
Φ⋆

(4)

is local to quadratic order in derivatives.

(A3) H is positive on the physical tangent space modulo diffeomorphism
and gauge zero modes, ensuring healthy kinetic terms and absence of
ghosts.

Locality at quadratic order. By (A2) we mean that the Hessian ker-
nels admit a derivative expansion around p2 = 0 with finitely many two-
derivative terms:

Ĥ(p) = A+B p2 + O(p4),
in the background-field sense, so that the reconstructed action is a sum of
local operators up to two derivatives.
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Gauge fixing and ghosts. For practical inversions one may add background-
field gauge-fixing terms and the corresponding Faddeev–Popov ghosts. Since
our statements concern the gauge-invariant local action reconstructed from
the physical blocks of H, the gauge-fixed operators serve only as intermedi-
ate tools and do not alter the coefficients in (9)–(10).

These assumptions follow the standard logic of quantum field theory in
curved spacetime 3 , 4 , 5 and effective action methods in gravity 6 .
In particular, axiom (A1) ensures the uniqueness of the operator basis at
quadratic order while (A2) and (A3) guarantee that the resulting local action
is well defined and ghost free.

2.2 Projectors and inner product

To evaluate the Hessian blocks we employ the natural inner product on
variations δΦ defined by MQG geometry 2 . Explicitly,

⟨δΦ1, δΦ2⟩ =
∫
d4x

√
−g⋆

[
δg(1)

µν Gµνρσ δg(2)
ρσ +δW a,(1)

µ δabgµν δW b,(2)
ν +δΨ(1)δΨ(2)

]
,

(5)
where Gµνρσ is the DeWitt supermetric on the space of metrics. The corre-
sponding orthonormal projectors onto metric, gauge orbit and modal direc-
tions are denoted Pg, Πa and PΨ respectively.

Let {ê(g)
I }, {ê(a)

A } and {ê(Ψ)
J } denote orthonormal bases with respect to

(5). Then the Hessian blocks project as

κ−2 ∝ ⟨ê(g)
I , H ê

(g)
I ⟩, (6)

(g−2)ab ∝ ⟨ê(a)
A , H ê

(b)
A ⟩, (7)

ci ∝ ⟨ê(g)
I , H ê

(a)
A ⟩, (8)

where ci are mixing coefficients associated with curvature–gauge operators
such as R trF 2, RµνF

µρF ν
ρ and CµνρσF

µνF ρσ 7 , 8 .

2.3 Infrared action from the Hessian

Proposition 2.1 (Uniqueness of the quadratic IR basis). Under (A1)–(A3)
the gauge- and diffeomorphism-invariant, local quadratic action up to two
derivatives consists uniquely of R and trF 2, with no dimension-four mixing.
The first curvature–gauge operators appear at dimension six as in (10), up
to total derivatives and field redefinitions.
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Expanding C to quadratic order about Φ⋆ yields a local IR action

SIR[g,Ψ,W ] =
∫
d4x

√
−g

[
1

2κ2R−Λ−1
4(g−2)abF

a
µνF

b µν+KΨ(g,Ψ,W )−VΨ(Ψ, g)+Mmix(g,W )
]
,

(9)
where κ−2, (g−2)ab and Λ are defined by the Hessian projections (6)–(8).
The mixing sector has the explicit structure

Mmix(g,W ) = c1R trF 2 + c2Rµν tr(FµρF ν
ρ) + c3Cµνρσ tr(FµνF ρσ) + · · · ,

(10)
with all coefficients fixed by Hessian projections.

Higher-order operators While (10) lists the unique curvature–gauge
structures at dimension six, the Hessian expansion naturally continues to
higher order. At dimension eight the independent, gauge- and diffeomorphism-
invariant quadratic operators consist of cubic contractions of curvature with
F 2 and of curvature-squared terms with F 2. A representative basis is

L(8)
mix = d1R

2 trF 2+d2RµνR
µν trF 2+d3RµνρσR

µνρσ trF 2+d4Rµν tr(FµλF ν
λ)+d5Rµνρσ tr(FµνF ρσ)+· · · ,

(11)
with coefficients di again determined by Hessian projections. Up to integra-
tions by parts and field redefinitions, this list spans the complete dimension-
eight basis of quadratic curvature–gauge couplings 6 , 5 .

Remark The operators in (11) are suppressed by two further powers of
the Planck scale relative to (10). Although negligible in most infrared set-
tings, they demonstrate that the MQG expansion provides a systematic,
finite basis at each dimension, with all coefficients calculable from recursion
geometry.

Equation (9) is the central structural result. The Einstein–Yang–Mills
sector emerges automatically in the IR with Newton’s constant, gauge cou-
plings and the cosmological constant determined internally by MQG. No
free constants are introduced by hand.

2.4 Ultraviolet behaviour and equivalence of representations

The infrared analysis above relied only on (A1)–(A3), which suffice to re-
construct the unique local quadratic basis and the dimension–six and –eight
corrections. Away from the soft limit, the Hessian kernels acquire non-local
momentum dependence that encodes recursion geometry. We now formalise
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two points: (i) the ultraviolet (UV) structure enforced by our axioms and
(ii) the equivalence, at quadratic order, of several natural representations of
the coherence functional.

Proposition 2.2 (UV completion under two admissible classes of form
factors). Let Ĥ(p) be the momentum-space Hessian kernel on the physical
subspace. If C[Φ] obeys (A1)–(A3), then the quadratic form factors belong
to one of two admissible classes ensuring ghost freedom:

(Track A) Stieltjes/CBF class. Suppose the form factors admit a Laplace-Stieltjes
representation with a positive measure,

Ĥ(p2
E) =

∫ ∞

0
dµ(s) e−sp2

E , dµ(s) ≥ 0,

in Euclidean momenta p2
E ≥ 0. Then Ĥ is entire, completely mono-

tone, reflection positive and free of extra poles. The infrared expansion
Ĥ(p2) = A+Bp2 + O(p4) reproduces the local basis 15 , 14 .

(Track B) Entire, zero-free class. Suppose instead that Ĥ(p2) is an entire function
of p2, real and positive for p2 ≥ 0, with no zeros on the real axis. Then
the only pole of the propagator is at p2 = 0, the IR limit again yields
A+Bp2, and tree-level ghost freedom and macrocausality are preserved.

Thus MQG admits two rigorous UV completions: the Stieltjes/CBF class
(Track A) with reflection positivity and exponential UV suppression, and the
entire zero-free class (Track B) with ghost-free analytic continuation. Both
reduce uniquely to the IR local action.

2.5 Equivalence of background realisations

We now show that the Hessian of C[Φ] is unitarily equivalent across its three
natural realisations: (i) the geometric Laplace-type operators on (S3, g),
(ii) the spectral triple (A,H, D), and (iii) the Hilbert-recursion presentation
(πω,Hω,R).

Lemma 2.3 (Weitzenböck and Lichnerowicz identities). On a compact spin
three–manifold (S3, g):

1. For scalars, ∇∗∇ = −∆g.

2. For spinors, D2 = ∇∗∇ + 1
4 Scal(g).
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3. For one–forms and TT tensors, the Hodge/Bochner Laplacians differ
from D2 by smooth curvature endomorphisms.

Lemma 2.4 (Projector commutation). On S3, the scalar, vector and transverse-
traceless projectors are polynomial (hence Borel) functions of the relevant
Laplacians. They therefore commute with F (Lg) for any bounded Borel func-
tion F .

Lemma 2.5 (Spectral calculus under GNS recursion). Let (A,H, D) be the
commutative spectral triple of (S3, g). Suppose the recursion generator R
is positive, self-adjoint and has the same spectral measure as D2 under the
GNS representation (πω,Hω). Then there exists a unitary U : H → Hω such
that

U F (D2)U−1 = F (R) ∀F bounded Borel.

Theorem 2.6 (Equivalence of background realisations). Let Hg, HD and
HR denote the Hessians in the geometric, spectral and recursion realisations,
defined sector-wise by H = F (L) + V with F any admissible form factor
and V a smooth endomorphism. Under assumptions (A1)–(A3) there exist
unitaries

UG→S : L2(S3) → H, US→R : H → Hω

such that

UG→S Hg U
−1
G→S = HD, US→R HD U−1

S→R = HR.

Hence all three Hessians are unitarily equivalent, with identical quadratic
forms, spectra and sectoral projectors.

Corollary 2.7 (Background independence). The MQG Hessian, its eigen-
modes and projectors are representation-independent. Results derived from
H are therefore insensitive to whether one works in geometric, spectral or
recursion language.

Lemma 2.8 (Equivalence of representations at quadratic order). Consider
the following representatives for C: (i) an information-geometric functional
on Ψ (Fisher block), (ii) a spectral functional Tr f(D[Φ]/Λ) with D a Dirac/Laplace-
type operator, and (iii) a discrete modal (graph/Hilbert) functional whose
continuum limit yields the spectrum of D. If their inner products are iden-
tified with (5), their quadratic Hessians coincide on the physical subspace
up to unitary equivalence of basis vectors. Consequently the infrared oper-
ator basis and the curvature-gauge coefficients obtained in Sections 2–4 are
representation-independent.
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Proof sketch. For (i) the Hessian of relative entropy at a stationary point is
the Fisher metric, giving the Ψ-block 16 , 17 . For (ii) varying Tr f(D/Λ)
twice and using spectral calculus yields entire nonlocal form factors whose
low–momentum expansion reproduces the Seeley-DeWitt series 15 , 14 .
For (iii) the graph Laplacian spectrum converges to the Laplace-Beltrami
spectrum under mild regularity; the GNS construction identifies the inner
product with (5). Matching projectors {Pg,Πa, PΨ} gives equality of blocks.

A hybrid model for UV form factors. As a concrete realisation of
Proposition 2.2, consider the spectral action with Gaussian regulator f(x) =
e−x:

C[Φ] = αTr f
(
D[g,Ψ,W ]

Λrec

)
+β

∫
d4x

√
−g IF [Ψ; g]+γ

∫
d4x

√
−g tr(FµνF

µν),
(12)

with f(x) = e−x smooth and positive. The corresponding Hessian kernels
take the form

Ĥgg(p) = κ−2
0 p2 Fg(p2/Λ2

rec), (13)
ĤW W (q) = Z q2 FW (q2/Λ2

rec), (14)
ĤgW (p, q) = c p2q2 Fmix(p2/Λ2

rec, q
2/Λ2

rec). (15)

Here F• are entire completely monotone functions arising from the Laplace
transform representation, placing the model squarely in Track A of Propo-
sition 2.2. Alternative entire zero-free regulators, such as exp[−(p2/Λ2

rec)n]
with n ≥ 1, illustrate Track B. Thus MQG admits UV completions within
both admissible classes.

Illustration: flat-background UV kernels. As an explicit instance of
Track A, take f(x) = e−x in (12) and expand about flat space with vanishing
gauge background. The quadratic kernels then read

Ĥgg(p) = κ−2
0 p2 e−p2/Λ2

rec PTT(p)+· · · , ĤW W (q) = Z q2 e−q2/Λ2
rec ΠT (q),

ĤgW (p, q) = c p2q2 e−(p2+q2)/Λ2
rec
(
projectors of Section 3.2

)
+ · · · .

These kernels are entire and completely monotone, hence belong to the
Stieltjes/CBF class. They exhibit exponential UV suppression, preserve
reflection positivity and reduce smoothly to the infrared coefficients in (9).
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A full covariant evaluation on curved backgrounds requires standard pertur-
bation theory and is left to future work.

A rigorous operator–theoretic foundation for the positivity and spec-
tral representation of the Hessian kernels (Laplace–Stieltjes form, complete
monotonicity and absence of extra poles) is developed in Appendix A.

Lemma 2.9 (Gauge Ward identity with entire form factor). Let the quadratic
gauge kernel in momentum space be

Ĥµν
W W (q) = Z q2 FW

(
q2

Λ2
rec

)
Πµν

T (q),

where FW is an entire function with FW (0) = 1 and Πµν
T (q) = ηµν −qµqν/q2

is the transverse projector. Then the Ward identity

qµ Ĥµν
W W (q) = 0

holds identically. Therefore, there are no spurious longitudinal poles and
BRST transversality is preserved at quadratic order.

Proof. By definition qµΠµν
T (q) = qµη

µν − qµq
µqν/q2 = qν − qν = 0. Mul-

tiplying by the scalar factor Z q2 FW (q2/Λ2
rec) does not alter transversality,

therefore qµ Ĥµν
W W (q) = 0. Since FW is entire and non-vanishing on the real

axis, the only pole of the inverse kernel is at q2 = 0 as in the infrared theory
15 , 14 .

Proposition 2.10 (FRW mixing form factor within Track A). With the
hybrid functional (12) and Gaussian regulator f(x) = e−x, the curvature–
gauge cross kernel on slowly varying FRW backgrounds induces the nonlocal
operator

LFRW
mix = cR

(
− □

Λ2
rec

)
R trF 2,

whose form factor belongs to Track A of Proposition 2.2. Explicitly,

cR

(
− □

Λ2
rec

)
= 1

Λ2
rec

∫ 1

0
dξ exp

[
− ξ(1 − ξ) −□

Λ2
rec

]
, (16)

with small-momentum expansion

cR

(
− □

Λ2
rec

)
= 1

Λ2
rec

[
1 − 1

6
−□
Λ2

rec
+ O

(
□2/Λ4

rec
)]
.

Thus the leading IR coefficient is cR = Λ−2
rec as used in Section 4.
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Proof sketch. Use the Schwinger representation with f(x) = e−x. Expand-
ing to first order in R and second order in F in covariant perturbation theory
produces factorised integrals of the type

F(−□) =
∫ 1

0
dξ exp

[
− ξ(1 − ξ) (−□)/Λ2

rec
]
,

multiplying the unique scalar contraction R trF 2. The IR limit follows by∫ 1
0 ξ(1 − ξ) dξ = 1/6. Entirety and complete monotonicity place cR squarely

in Track A, ensuring ghost freedom and exponential UV suppression.

Corollary 2.11 (IR limit and ghost freedom). Equation (16) reduces to
cR = Λ−2

rec as −□/Λ2
rec → 0, while for finite momenta it defines an entire,

ghost-free operator dressing that preserves IR locality and introduces only
exponentially suppressed non-locality at high momentum.

Lemma 2.12 (Closed form of the FRW mixing form factor within Track
A). For the Gaussian spectral regulator f(x) = e−x the FRW scalar mixing
form factor is an explicit element of the Stieltjes/CBF class and admits the
closed expression

cR

(
− □

Λ2
rec

)
= 1

Λ2
rec

exp
[

− z

4
] √

π√
z

erfi
(√

z

2
)
, z ≡ − □

Λ2
rec
, (17)

with small-momentum expansion

cR

(
− □

Λ2
rec

)
= 1

Λ2
rec

[
1 − 1

6
−□
Λ2

rec
+ 1

60

(−□
Λ2

rec

)2
− 1

840

(−□
Λ2

rec

)3
+ · · ·

]
.

(18)

Proof sketch. Starting from the Schwinger representation in Proposition 2.10,
write

cR

(
− □

Λ2
rec

)
= 1

Λ2
rec

∫ 1

0
dξ exp

[
− ξ(1 − ξ) z

]
, z = −□/Λ2

rec.

Completing the square ξ(1 − ξ) = 1
4 − (ξ − 1

2)2 and setting u = ξ − 1
2 yields∫ 1/2

−1/2
du exp

[
− z

4

]
exp

[
z u2] = exp

[
− z

4

] √
π√
z

erfi
(√

z
2

)
,

which gives (17). Expanding erfi for small argument produces the series (18).
Entirety and absence of extra poles follow from the Gaussian regulator and
the complete monotonicity of the Schwinger integral 15 , 14 .
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Analytic continuation. Equation (17) is written for Euclidean momenta
z > 0. In Lorentzian signature one continues z → −z ± i0; using erfi(ix) =
− i erf(x) expresses cR in terms of the ordinary error function. No additional
poles are introduced by this continuation, so causal structure is preserved.

Manifold reconstruction. In the commutative limit of the modal al-
gebra the spectral triple (A,H, D) becomes (C∞(M), L2(S), D/) for a four-
dimensional manifold M with metric g. The spectral distance reproduces
the geodesic distance and Weyl asymptotics fixes the dimension. Hence the
manifold is not assumed but reconstructed as the commutative limit of the
same data that fixes the Hessian 11 , 12 , 13 .

This does not introduce circularity: in the main text we have presented
MQG on a smooth manifold for clarity, but Lemma 2.8 shows that the same
Hessian arises from purely algebraic or spectral data. The manifold therefore
appears as a reconstructed limit.

Summary of UV structure. Taken together, Propositions 2.2 and 2.10,
Lemmas 2.9 and 2.12, and the background-equivalence results 2.6–2.8, es-
tablish a coherent ultraviolet picture. The MQG Hessian admits only two
admissible classes of nonlocal form factors (Track A: Stieltjes/CBF, Track B:
entire zero-free), both of which are ghost-free and reduce smoothly to the
local IR coefficients. Ward identities are preserved, mixing operators inherit
the same ghost-free structure and explicit closed forms, such as (17), exem-
plify the analytic class. Therefore, MQG achieves a UV completion without
introducing additional degrees of freedom, while maintaining consistency
across geometric, spectral and recursion realisations.

12



3 Gauge-Gravity Coupling: Formal Derivation

3.1 Electroweak scale from SU(2) stability

We identify the electroweak scale as the symmetry breaking scale of the
SU(2) × U(1) sector determined by MQG stability. Let the SU(2)–charged
component of the modal field be denoted by a complex doublet H, extracted
from Ψ by the projector PΨ onto the SU(2) representation. The gauge block
of the Hessian H restricted to the su(2) orbit is invariant under the adjoint
action of SU(2), hence is proportional to the identity in the Lie algebra
indices.
Lemma 3.1 (Isotropy of the SU(2) gauge block). Under (A1) the SU(2)
gauge–orbit block of the Hessian satisfies(

HW W

)ij
µν

= Z2 δ
ij gµν (−□ + · · · ), i, j = 1, 2, 3, (19)

so that the IR gauge kinetic normalisation is

−1
4(g−2)ijF i

µνF
j µν = −1

4g
−2
2 δijF i

µνF
j µν , g−2

2 ≡ Z2. (20)

Proof. Gauge invariance (A1) implies Ad–invariance of the quadratic form
on su(2), hence it must be proportional to the Killing form which is δij in a
Cartesian basis. Locality (A2) fixes the two–derivative structure. Positivity
(A3) fixes the sign of Z2. This yields (19) and (20).

The U(1) block gives similarly a positive number g−2
1 . We write the

covariant derivative on H in the standard normalisation

DµH =
(
∂µ − i

2g2W
i
µτ

i − ig1 Y Bµ

)
H, Y = 1

2 , (21)

with Pauli matrices τ i and hypercharge Y = 1
2 9 .

We adopt the convention where the SU(2) generators are τ i/2 with
tr(τ iτ j) = 2δij 9 .

Effective potential and stability. The IR scalar sector for the SU(2)
doublet is determined by the quadratic and quartic parts of the MQG ex-
pansion. Denote by m2

H the coefficient of H†H and by λH > 0 the quartic
coefficient. Both are fixed by variations of C evaluated at Φ⋆:

V (H) = m2
H H†H + λH(H†H)2 + · · · ,

m2
H = NΨ

〈
ê

(Ψ)
H ,H ê

(Ψ)
H

〉
+ ξR⋆,

λH = 1
4! δ

4C[Φ⋆]
(
ê

(Ψ)
H

)⊗4
.

(22)
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where ê(Ψ)
H is the unit SU(2)–doublet direction in field space and R⋆ is the

background curvature. The non–minimal ξR⋆ term is allowed by diffeomor-
phism invariance and is determined by the same MQG data 1 , 2 .

Proposition 3.2 (Stability threshold and vacuum expectation). Assume
λH > 0. If m2

H < 0 at the chosen recursion depth then the vacuum minimises
at

⟨H⟩ = 1√
2

(
0
v

)
, v2 = − m2

H

λH
. (23)

Proof. This is the unique minimum of (22) for λH > 0 and m2
H < 0. Gauge

orbits of H leave H†H invariant, hence the minimum is on an SU(2) orbit
with isotropy U(1)em.

Electroweak scale from MQG. The parameter v in (23) is the elec-
troweak scale. Since both m2

H and λH are fixed by MQG variations, the
scale v is determined by the same Hessian data that set g1 and g2. The
gauge boson masses follow from (21) and (23):

m2
W = 1

4 g
2
2 v

2, m2
Z = 1

4 (g2
2 + g2

1) v2, tan θW = g1
g2
, (24)

with the photon remaining massless and the tree–level ρ parameter equal to
1 10 . These relations are consequences of the isotropy Lemma 3.1 and the
standard Higgs mechanism applied to the MQG–fixed couplings.

Theorem 3.3 (MQG determination of the electroweak scale). Under (A1)–(A3),
and assuming λH > 0, there exists a recursion depth at which m2

H in (22)
changes sign. When m2

H < 0 the electroweak scale

v2 = − m2
H

λH
= − NΨ ⟨ê(Ψ)

H ,H ê
(Ψ)
H ⟩ − ξR⋆

λH
(25)

is fixed by MQG projections. The gauge boson masses are then given by
(24), with g1 and g2 determined by the U(1) and SU(2) Hessian blocks as in
Lemma 3.1.

Proof. The sign change follows from continuity of the Hessian eigenvalue
along recursion depth and boundedness of the scalar sector which implies
λH > 0 at the IR fixed point 1 . Equation (25) is (23) written in terms of
MQG data. The mass relations (24) follow from expanding the kinetic term
|DµH|2 about the vacuum and diagonalising the neutral gauge sector with
mixing angle θW 10 .
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Remarks (i) The relations (24) hold independently of curvature–gauge
mixing terms since these enter at dimension six and do not modify the
tree–level mass matrix. (ii) The absolute value of v may inherit a mild cur-
vature dependence through m2

H if R⋆ ̸= 0 in (22), which is Planck suppressed
in the IR.

3.2 Emergence of U(1) coupling from curvature projection

We now show that the U(1) gauge interaction arises in MQG with a gauge-
invariant quadratic action, and that curvature affects the abelian sector only
through dimension-six mixings fixed by the Hessian.

Lemma 3.4 (Abelian block structure). Let êB be the normalised unit vector
in the U(1) direction of field space. Under (A1)–(A3) the gauge-invariant
quadratic action for Bµ at two derivatives is uniquely

L(2)
U(1) = − 1

4 Z1 FµνF
µν , Z1 > 0, (26)

and curvature dependence of the abelian sector first appears at dimension
six via the mixings in (10).

Proof. Gauge invariance forbids terms with naked Bµ at quadratic order, so
no RB2 or RµνB

µBν operators are allowed. Locality and diffeomorphism in-
variance restrict the two-derivative, gauge-invariant scalar to F 2. Positivity
ensures Z1 > 0. Curvature enters next through the unique gauge-invariant
basis at dimension six, as in (10) 6 , 5 , 8 .

Proposition 3.5 (Curvature projection for U(1)). The U(1) kinetic coeffi-
cient and curvature mixings are fixed by Hessian projections:

g−2
1 = Z1 = ⟨êB,H êB⟩, {α1, α2, α3} ∝ ⟨êg,H êB⟩ with tensor decomposition onto (41).

(27)

Proof. Equation (27) follows from evaluating the Hessian on orthonormal
basis vectors in the inner product (5). Gauge invariance ensures the quadratic
action is (26). Curvature dependence arises only through Hessian cross-
terms with the metric direction, which decompose into the dimension-six
operators of (41). Uniqueness follows because no further independent ten-
sors exist at this order 6 , 5 .
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Remark Any RB2–type terms that appear in intermediate formulae re-
flect the gauge-fixed kinetic operator in background-field gauge, not the
gauge-invariant action. Physical predictions depend only on the gauge-
invariant combinations in (26) and (41) 7 , 8 .

Having established that curvature dependence in the abelian sector arises
only through the dimension-six operators of (10), it is useful to make ex-
plicit how the corresponding coefficients can be extracted from the recursion
Hessian. This leads to the following projection formulas.

3.2.1 Projection formulas for curvature–gauge mixing coefficients

For explicit extraction of the mixing coefficients in (10), work in Fourier
space around Φ⋆ with momenta p (metric) and q (gauge). Define the trans-
verse projectors

πµν(p) := ηµν − pµpν

p2 , Παβ
T (q) := ηαβ − qαqβ

q2 , (28)

the metric spin projectors

PTT
µν|ρσ(p) := 1

2
(
πµρπνσ + πµσπνρ

)
− 1

3πµνπρσ, P S
µν(p) := 1

3 πµν(p), (29)

and the antisymmetric gauge projector for the F ∧ F index structure

Aαβ|ρσ(q) := Παρ
T (q) Πβσ

T (q) − Πασ
T (q) Πβρ

T (q). (30)

Let Ĥµν|aα,bβ
gW (p, q) denote the mixed Hessian kernel between metric and

gauge directions.

Scalar (Ricci-scalar) channel: cR = c1+ 1
3c2. On conformally flat back-

grounds (e.g. FRW) the Weyl tensor vanishes, so the mixing reduces to the
single combination cR := c1 + 1

3c2. It is extracted by the double soft limit

cR = lim
p2→0
q2→0

1
2 p2q2 P

S
µν(p) δab Παβ

T (q) Ĥµν|aα,bβ
gW (p, q), (31)

which isolates theR trF 2 structure. The factors p2 and q2 divide the minimal
two-derivative weights carried by R and F 2.
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Weyl channel: c3 (birefringent sector). Project onto metric TT and
the antisymmetric transverse gauge pair to read off the Weyl coupling:

c3 = lim
p2→0
q2→0

1
2 p2q2 P

TT
µν|ρσ(p) δab Aαβ|γδ(q) Ĥµν|aα,bβ

gW (p, q) PTT ρσ
γδ(p).

(32)
This selects the unique trace-free spin-2 channel that sources the linearised
Weyl tensor, hence isolates the CµνρσF

µνF ρσ coupling.

Separating c1 and c2. Away from conformally flat backgrounds one can
disentangle c1 and c2 by evaluating the scalar–symmetric channel on two
independent metric scalar polarisations. Let u(1)

µν (p) := P S
µν(p) and choose a

unit spatial vector n̂ orthogonal to p to define

u(2)
µν (p) := n̂µn̂ν − 1

3 πµν(p),

which is symmetric and trace-free in the scalar sector. Form the double-soft
projections

M(n) := lim
p2→0
q2→0

1
2 p2q2 u

(n)
µν (p) δab Παβ

T (q) Ĥµν|aα,bβ
gW (p, q), n = 1, 2. (33)

These obey a linear system(
M(1)
M(2)

)
=
(

Ξ11 Ξ12

Ξ21 Ξ22

)(
c1

c2

)
, ⇒

(
c1

c2

)
= Ξ−1

(
M(1)
M(2)

)
, (34)

where the kinematic matrix Ξ is fixed by the chosen polarisation basis and
our normalisations of (10). In practice, one computes Ξ once by contracting
the basis tensors R trF 2 and RµνF

µλF ν
λ with u

(n)
µν and Παβ

T .

Notes (i) Rotational invariance ensures that the limits in (31)–(34) are
independent of the directions of p and q. (ii) On Ricci-flat backgrounds R =
0 = Rµν , so (32) directly isolates c3. (iii) In conformally flat backgrounds
Cµνρσ = 0, so (31) gives cR = c1 + 1

3c2 cleanly. (iv) With the normalisation
of (9)–(10) one may identify αi ≡ ci for comparison with (41).

These projection identities make clear that the curvature-gauge mixing
coefficients are not free parameters but computable quantities fixed by the
same Hessian structure that defines the Einstein and Yang-Mills sectors. We
now turn to the geometric interpretation of this result, where gauge fields
themselves appear as projected curvature fluctuations.
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Beyond the FRW and double–soft limits used above, the extraction of the
mixing coefficients on arbitrary smooth backgrounds follows from covariant
perturbation theory via the Seeley-DeWitt coefficient a3. This yields the
background–independent determination of (c1, c2, c3) from a Laplace–type
operator on the gauge bundle, as detailed in Appendix B.

3.3 Gauge fields as curvature fluctuations

In MQG, gauge bosons arise as coherent fluctuations of curvature projected
along modal directions. This section formalises that identification.

Lemma 3.6 (Modal–curvature decomposition). Let δgµν be a linearised
metric perturbation around g⋆. The Hessian inner product (5) admits a
decomposition

δgµν = δg∥
µν + δg⊥

µν , ⟨δg∥, ê(a)⟩ ≠ 0, ⟨δg⊥, ê(a)⟩ = 0, (35)

where ê(a) are the gauge orbit directions in configuration space. The longi-
tudinal component δg∥ sources gauge fluctuations.

Proof. The orthogonal decomposition follows from the completeness of the
basis {ê(g), ê(a), ê(Ψ)} with respect to (5). By construction δg⊥ is orthogonal
to all gauge directions while δg∥ projects onto them, therefore, it induces
non-zero expectation values of δW a

µ .

Curvature-gauge correspondence. Expanding the Einstein tensor to
linear order, δGµν ∼ ∇2δgµν 3 , the projection (35) implies a linear relation

δW a
µ ∝ P aρσ δg∥

ρσ,µ, (36)

for some projector P aρσ determined by MQG geometry. The proportionality
constant is set by the Hessian matrix elements (7) and (8).

Proposition 3.7 (Gauge excitations as projected curvature modes). At the
level of the quadratic tangent space at Φ⋆, there exists a linear, local map

Pa : δgµν 7→ δW a
µ = Pa

µ
ρσ ∇ρδgσ

µ, (37)

with Pa determined by Hessian cross–blocks and the inner product (5). This
map reproduces the cross–terms in the quadratic action and is unique modulo
gauge redundancy. It does not identify W a

µ as a derivative of gµν beyond the
linearised, projected level.
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Proof. The inner product (5) and the decomposition (35) ensure that only
the parallel component of curvature fluctuations couples to the gauge direc-
tions. Locality (A2) restricts the operator to a single derivative of δg, while
invariance (A1) requires projection with Πa

ρσ. Positivity (A3) fixes the sign
of the kinetic term. Equation (3) follows.

Interpretation (i) Equation (3) provides a geometric origin for gauge
fields: they are the modal components of curvature oscillations along non-
trivial directions in configuration space. (ii) This perspective explains why
gauge fields inherit the same coherence functional normalisation as the met-
ric sector, ensuring consistency of couplings. (iii) The construction echoes
the spirit of Kaluza-Klein theory, where gauge fields arise from extra dimen-
sions 4 , but here the origin is modal recursion rather than higher spatial
coordinates. (iv) Unlike in effective field theory 6 , 5 , the curvature-gauge
terms in MQG are not optional counter-terms but structural necessities of
the Hessian expansion.

3.4 Consistency with the Einstein equations

Having established the emergence of curvature-gauge couplings, it is essen-
tial to show that the resulting system remains consistent with the Einstein
equations in the infrared. In particular, the Bianchi identity must be pre-
served and the stress-energy derived from gauge fluctuations must match
the right-hand side of the Einstein equations.

Lemma 3.8 (Bianchi identity preservation). Let ∇µ denote the covariant
derivative with respect to gµν . Then for the mixed action (9)–(10) one has

∇µ(Gµν + Λgµν − κ2T tot
µν

)
= 0, (38)

where T tot
µν is the sum of gauge, scalar and mixing contributions.

Proof. The Bianchi identity ∇µGµν = 0 holds identically 3 . Diffeomor-
phism invariance (A1) ensures that the action variation with respect to gµν

is conserved, hence ∇µT tot
µν = 0. Equation (38) follows.

Gauge stress–energy. The canonical stress-energy tensor of the Yang-
Mills sector is

TYM
µν = (g−2)ab

(
F a

µλF
b
ν

λ − 1
4 gµνF

a
ρσF

b ρσ
)
, (39)
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which is covariantly conserved on the gauge field equations of motion. The
mixing terms (10) contribute additional pieces proportional to curvature
tensors contracted with Fµν , which remain divergence free because the cur-
vature tensors themselves satisfy contracted Bianchi identities 6 , 5 .

Proposition 3.9 (Consistency of gauge-gravity sector). The variation of
the full MQG infrared action (9) yields field equations

Gµν + Λgµν = κ2
(
TYM

µν + TΨ
µν + Tmix

µν

)
, (40)

with each stress-energy contribution covariantly conserved. The system is
therefore consistent with the Einstein equations.

Proof. Variation of (9) with respect to gµν produces the left-hand side of
(40). The right-hand side follows from functional differentiation of the Yang-
Mills, scalar and mixing terms. Diffeomorphism invariance guarantees the
conservation of each term, as in Lemma 3.8. This ensures that the full system
satisfies the Einstein equations without additional constraints 3 .

Interpretation (i) The inclusion of the mixing sector does not spoil con-
sistency with Einstein dynamics, but rather extends the definition of the
total stress-energy.

(ii) The Einstein equations (40) retain their form with Newton’s constant
κ2 fixed by MQG, while gauge fields and curvature are dynamically linked.
(iii) The construction demonstrates that gauge-gravity coupling in MQG is
not imposed but emerges compatibly with geometric conservation laws.
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4 Corrections and predictions
Beyond recovering Einstein-Yang-Mills in the infrared, MQG introduces spe-
cific higher-order terms coupling curvature and gauge fields. These arise
uniquely from the Hessian mixing coefficients defined in (8). The schematic
structure is

∆L ∼ α1RF
2 + α2RµνF

µλF ν
λ + α3CµνρσF

µνF ρσ, (41)

with coefficients αi calculable from recursion geometry. Similar structures
have appeared in effective field theory approaches 6 , 5 , 7 , 8 , but in
MQG they are fixed by the Hessian rather than inserted as counter-terms.

These operators are Planck-suppressed but non-zero and produce dis-
tinctive phenomenology:

• Curvature-dependent running of couplings. The effective gauge
couplings acquire local curvature dependence through (41), leading to
small shifts in effective interaction strengths in extreme gravitational
environments. Only certain curvature and topology combinations al-
low stable excitations, linking coupling stability directly to geometry.(

g−2
eff
)

ab
(x) = (g−2)ab + 2α1R(x) δab + · · · . (42)

The schematic expression (42) illustrates how a curvature-dependent
correction with coefficient α1 would appear in the effective gauge ki-
netic term. However, in MQG this coefficient is not free: the Hessian
projections of Section 3.2 fix it uniquely. We therefore restate the
result in the form of the following corollary, now written with the
Hessian-determined constant cR.
For arbitrary backgrounds the coefficients (c1, c2, c3) (and hence cR)
are fixed by the universal a3 structures; see Appendix B.

Corollary 4.1 (Curvature-dependent gauge shift). The curvature-
dependent shift of the effective gauge coupling is governed by the scalar
mixing coefficient cR defined in (31). In particular,(

g−2
eff
)

ab
(x) = (g−2)ab + 2 cR R(x) δab + · · · , (43)

so that the leading dependence of gauge dynamics on background cur-
vature is calculable from Hessian projections.
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• Confinement scale modulation. In regions of strong curvature,
such as neutron stars or near black hole horizons, the operators in
(41) shift the balance between gauge self-interaction and recursion
stability, inducing small changes in the QCD confinement scale. This
effect is unique to MQG since αi are not tunable parameters.

∆ΛQCD
ΛQCD

≈ − 16π2

b
α1R + O(R2), (44)

with b the one–loop coefficient of the QCD beta function 5 .

Corollary 4.2 (Confinement scale modulation). The shift of the QCD
confinement scale in curved backgrounds is controlled by the same
scalar mixing coefficient cR as in Corollary 4.1. To leading order one
finds

∆ΛQCD
ΛQCD

≈ − 16π2

b
cR R + O(R2), (45)

where b is the one-loop coefficient of the QCD beta function. Thus
MQG predicts a small curvature-dependent modulation of the confine-
ment scale with strength set by the Hessian projection (31).

• Polarisation-dependent lensing. The CµνρσF
µνF ρσ term in (41)

induces birefringent bending of light: photon polarisations follow slightly
different effective metrics in regions of high Weyl curvature. This phe-
nomenon parallels the QED vacuum birefringence identified by Drum-
mond and Hathrell 7 but is derived here from MQG with fixed coef-
ficients.

Corollary 4.3 (Birefringent lensing). The splitting of photon polarisa-
tions in curved backgrounds is governed by the Weyl mixing coefficient
c3 from (32). In the geometric optics limit the two circular polarisa-
tions propagate along neighbouring null cones with phase velocities

v± = 1 ± c3
Cµνρσ k

µkρϵνϵσ

ω2 , (46)

where kµ is the photon wavevector, ϵν its polarisation, ω the frequency
and Cµνρσ the background Weyl tensor. The relative sign corresponds
to the two helicities. This effect parallels the Drummond–Hathrell bire-
fringence 7 , 8 , but with coefficient c3 fixed by MQG Hessian projec-
tions.
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• Energy exchange with gravitational waves. Recursive geome-
try allows small but finite transfers between gauge excitations and
tensor oscillations of the metric. This follows from the cross-terms
in (41), suggesting possible signatures in high-precision gravitational
wave spectra where apparent damping or amplification correlates with
electromagnetic activity.
(Here Ω2h plays the role of the tidal Weyl scale, the same tensorial
structure that controls birefringence in Corollary 4.3.)

Proposition 4.4 (Quadratic energy transfer under slow phase mod-
ulation). Consider a Ricci-flat gravitational wave background with an-
gular frequency Ω and strain amplitude h. At quadratic order in the
Hessian, the gauge–gravity cross-term induces a slow phase modula-
tion of a monochromatic electromagnetic mode of carrier frequency
ω. Model a single polarisation mode A(t) of a narrow-band packet
(∆ω ≪ ω) by the phase-modulated quadratic action

S[A] = 1
2

∫
dt
(
Ȧ2 − ω2 [1 + ϵ φ(t)]2A2

)
, (47)

with ϵ ≪ 1 and φ smooth. Define the Noether energy of the unperturbed
system by

E [A] = 1
2
(
Ȧ2 + ω2A2). (48)

Then, over one carrier period T = 2π/ω, the fractional energy shift
obeys

∆E
E

= 1
2
(
∆ϕ
)2 + O(ϵ3) + O

(
∆ω
ω ϵ2

)
, ∆ϕ ≡ ϕ(t0+T )−ϕ(t0), ϕ(t) = ϵ φ(t).

(49)
For a co-propagating electromagnetic wave traversing distance L in the
gravitational wave background, the modulation phase accumulates as

∆ϕ ≈ 2 c3 ω LΩ2 h, (50)

so that, to leading order in the eikonal and narrow-band approxima-
tions,

∆EEM
EEM

≈ 1
2
(
2 c3 ω LΩ2 h

)2 + O(ϵ3) + O
(

∆ω
ω ϵ2

)
. (51)

In non-vacuum backgrounds an additional contribution proportional to
c2Rµν appears at the same order.
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Proof sketch. The gauge–gravity cross-term arising from the Hessian
mixing induces a slow phase modulation of the electromagnetic quadratic
form, giving (47). Introduce action–angle variables for the carrier
mode and apply the averaging or multiple-scales method for slowly
varying frequency. The adiabatic invariant I = E/ω is conserved
up to O(ϵ3); the leading variation over one carrier period is ∆I/I =
1
2(∆ϕ)2 + O(ϵ3), yielding (49) after restoring E . The eikonal estimate
(50) follows from the phase picked up by the mixing term proportional
to c3 in (10) along a path of length L in the Ricci-flat wave, with the
tidal scale set by Ω2h. Combining these gives (51). The bandwidth
correction stems from replacing a single mode by a narrow packet of
width ∆ω.

• Modal potential as the dark sector.

Definition and field equation. Let Punres(Γcrit) be the spectral
projector onto unresolved Ψ-modes with eigenvalue λ > Γcrit in the
recursion operator. Define the unresolved modal density

ρunres(x) =
∫

λ>Γcrit
w(λ) |ψλ(x)|2 dµ(λ), (52)

where w(λ) is the MQG weight from the coherence functional. The
modal potential Φmodal is the unique weak solution on (S3, g) of the
screened elliptic problem(

− ∆g +m2)Φmodal = κ ρunres, m ≥ 0, (53)

with the zero mean condition
∫

S3
√
gΦmodal = 0 fixing the additive

constant. The coupling κ is fixed by Gauss-law normalisation in the
linear regime.
Theorem 4.5 (Existence, uniqueness, and effective source). On com-
pact S3 with smooth g and ρunres ∈ L2(S3), the boundary value problem
(53) admits a unique weak solution Φmodal ∈ H1(S3). The modal po-
tential contributes to the field equations via the effective stress–energy
tensor

Tmodal
µν = ∇µΦmodal ∇νΦmodal − 1

2 gµν

(
∇αΦmodal∇αΦmodal+m2Φ2

modal

)
,

(54)
obtained by varying the Φmodal contribution to the coherence functional
with respect to gµν . Hence the dark sector is not postulated but arises
from unresolved modal density through (53).
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Proof sketch. Lax–Milgram on H1(S3) with bilinear form
∫

(∇u ·∇v+
m2uv)√g and linear functional

∫
κ ρunresv

√
g gives existence and unique-

ness. The stress–energy (54) follows from the Noether–Hilbert varia-
tion of the quadratic functional

∫ 1
2(∇Φ)2 + 1

2m
2Φ2 −κΦ ρunres at fixed

Γcrit.

Connection to the decoherence gradient. It is useful to con-
nect the modal potential to the decoherence gradient introduced in
Section 3.2. In that notation the unresolved modes source

Γdeco ∼ ∇Φmodal, (55)

so that the elliptic definition (53) and the stress–energy contribution
(54) close consistently with the earlier gradient picture.

Corollary 4.6 (Physical interpretation of the modal potential). The-
orem 4.5 implies that unresolved modes contribute to curvature through
(54). Physically, gradients of Φmodal behave as DM-like sources while
the homogeneous component produces a DE-like vacuum term propor-
tional to m2Φ̄2. MQG thus reframes the dark sector as a direct conse-
quence of recursion geometry rather than new particle species.

Normalisation and DM/DE split. Decompose Φmodal = Φ̄ + Φ⊥
with Φ̄ the constant S3 mode and

∫ √
gΦ⊥ = 0. The constant part

renormalises the homogeneous component, producing a vacuum-like
contribution proportional to m2Φ̄2. The zero-mean part Φ⊥ yields
gradients that act as DM-like sources through (54). Fix κ by imposing∫

S2∇Φmodal · dS = κM around a resolved test mass M in the linear
regime, ensuring consistent Gauss-law normalisation.

Predictive fingerprint Taken together, these five signatures — curvature-
dependent running of couplings, confinement scale modulation, polarisation-
dependent lensing, gauge–wave energy exchange and modal potential —
form a predictive fingerprint of MQG. No dark sector mysteries or free pa-
rameters remain once gauge–gravity coupling is derived from first principles.
The challenge is empirical: each signature can, in principle, be constrained
or falsified by observations, from gravitational wave spectra to cosmic mi-
crowave background anisotropies 18 .
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5 Discussion
The results above demonstrate that gauge-gravity coupling in MQG is not an
additional postulate but follows directly from the Hessian expansion of the
coherence functional. The recovery of Einstein-Yang-Mills in the infrared,
with fixed higher-order curvature-gauge corrections, shows that MQG con-
tains the standard gauge and gravitational dynamics as a special case while
predicting distinctive new signatures.

Comparison with existing approaches. In effective field theory treat-
ments of gravity, operators of the form (41) are introduced as Planck-
suppressed counter-terms with arbitrary coefficients 6 , 5 . In string the-
ory, gauge-gravity couplings arise from Kaluza-Klein modes or worldsheet
anomalies, while in loop quantum gravity such couplings are not naturally
generated. MQG derives the same structures directly from the variational
principle, with coefficients αi fixed by recursion geometry. This eliminates
free parameters and demonstrates that gauge-gravity mixing is structurally
inevitable.

Representation independence. A distinctive strength of MQG is that
the Hessian expansion, and hence the predictive fingerprint described above,
does not depend on a particular realisation of the coherence functional.
Whether C is formulated in information–geometric form, as a spectral action,
or as a discrete modal functional, the quadratic Hessian coincides on the
physical subspace (Lemma 2.8). This guarantees that the infrared recovery
of Einstein–Yang–Mills and the ultraviolet analyticity of the form factors are
structural features of MQG rather than artefacts of a chosen representation
11 , 13 , 16 .

Phenomenological implications. The predictive fingerprint outlined in
Section 4 distinguishes MQG from other frameworks. Birefringent lensing
and curvature-dependent running of couplings provide clear observational
tests. Confinement scale modulation near compact objects offers a novel
probe of QCD in strong gravity regimes. Energy exchange between gauge
fields and gravitational waves suggests signatures accessible to future inter-
ferometers. The reframing of the dark sector in terms of modal potential
(55) resolves long-standing anomalies without invoking hidden particles.
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Determination of constants. A key distinction from earlier formula-
tions 2 is that none of the couplings or constants are introduced by hand.
Newton’s constant, the gauge couplings and the cosmological constant all
arise as Hessian projections defined in Section 2, while the curvature–gauge
mixing coefficients ci are fixed by the projection formulas of Section 3.2. In
principle, once a foliation and spectral regulator are specified, all of these
quantities can be calculated numerically from the recursion Hessian. This
shifts MQG from a descriptive framework to a predictive one.

All schematic constants introduced in Section 4 (e.g. α1 in the curvature–
dependent running term) are fixed by Hessian projections, so that the final
coefficients (cR, c3, etc.) are uniquely determined within MQG rather than
left as free parameters.

Limitations. The analysis here has been restricted to the infrared ex-
pansion of the Hessian. Higher-order operators beyond those in (10) and
(11) may be relevant near the Planck scale. The precise numerical values
of the coefficients αi require explicit evaluation of the recursion Hessian on
specific foliations, which remains an open computational challenge. A fur-
ther limitation concerns the cosmological role of modal potential. While
Corollary 4.6 establishes its contribution to the stress-energy tensor, a full
treatment of its backreaction requires solving the Friedmann equations with
the source term (54). This work lies beyond the scope of the present paper
but will be essential for connecting MQG predictions to large-scale structure
and cosmic acceleration.

Future directions. Several natural extensions arise from these limita-
tions:

• Explicit evaluation of Hessian coefficients. The projection for-
mulas of Section 3.2 provide a route to computing the mixing coeffi-
cients αi from the recursion Hessian. Carrying out these calculations
on simple foliations would supply numerical values and sharpen the
quantitative predictions of MQG.

• Higher-order operator classification. While dimension–six and
dimension–eight operators have been identified in (10) and (11), a
systematic classification at higher dimensions remains to be completed.
This would test the stability of the expansion and identify any further
universal structures.
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• Cosmology with modal potential. Incorporating the stress-energy
source (54) into the Friedmann equations would quantify the impact of
modal potential on cosmic expansion and large-scale structure. This
represents a direct alternative to dark matter and dark energy models
and offers a clear empirical avenue for MQG.

• Phenomenological tests. The birefringence (Corollary 4.3) and
gauge–wave exchange (Corollary 4.4) signatures may be constrained
with astrophysical polarimetry and gravitational-wave interferometry.
Developing order-of-magnitude bounds would bring MQG into contact
with present observational data.

• Extension of UV analysis. Section 2.5 demonstrates ghost-free
non-local form factors on flat backgrounds with Gaussian damping.
Extending this analysis to weakly curved backgrounds using covariant
perturbation theory would produce explicit form factors cR(□/Λ2) and
c3(□/Λ2). This would place the UV expansion on the same explicit
footing as the infrared results.

28



6 Conclusion
We have shown that gauge-gravity coupling in Manifold Quantum Grav-
ity arises directly from the Hessian expansion of the coherence functional.
The Einstein-Yang-Mills sector is recovered in the infrared with Newton’s
constant, gauge couplings and the cosmological constant fixed by recur-
sion geometry. Higher-order curvature-gauge operators appear with fixed
coefficients, leading to testable signatures: curvature-dependent running of
couplings, confinement scale modulation, birefringent lensing, gauge-wave
energy exchange and the reinterpretation of the dark sector as modal po-
tential.

A central outcome of this work is that these results do not rely on a
particular realisation of the coherence functional. Whether C is constructed
in information-geometric form, as a spectral action or as a discrete modal
functional, the quadratic Hessian coincides on the physical subspace, guar-
anteeing that both the infrared recovery of Einstein-Yangand the ghost-free
UV form factors are structural features of MQG rather than model artefacts.

These findings establish MQG as a unified variational framework in
which gauge and gravitational interactions are encoded coherently, with-
out free counter-terms or hidden sectors. Future work will focus on explicit
evaluation of Hessian coefficients, incorporation of modal potential into cos-
mology, and confrontation of birefringence and gauge-wave signatures with
observational data.
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A Positivity of the spectral measure
The ultraviolet control of MQG rests on the assumption that the Hessian
kernels admit a positive spectral representation. In this appendix we estab-
lish this result rigorously for compact foliations, justifying Proposition 2.2
in the main text.

A.1 Setup and definitions

Let (M, g) be a smooth, compact Riemannian 4–manifold without bound-
ary. Let E → M be a Hermitian vector bundle of finite rank equipped
with a metric connection ∇. We consider recursion operators of the general
Laplace–type form

R = − ∇∗∇ + V, (56)

acting on smooth sections of E, where ∇∗∇ is the Bochner Laplacian and
V ∈ C∞(End(E)) is a smooth, self–adjoint endomorphism field. Such oper-
ators are elliptic, formally self–adjoint and bounded below.

Spectral theorem. Since M is compact, R has discrete spectrum {λi}∞
i=0

with finite multiplicities, λi → ∞, and admits a complete orthonormal basis
of eigenvectors {ei} in L2(E). Thus

Rei = λiei, ⟨ei, ej⟩ = δij , λi ≥ λ0 > −∞. (57)

By shifting V if necessary one may assume λ0 ≥ 0.

Heat kernel. The associated heat semigroup is defined by

K(s) = e−sR, s > 0, (58)

with integral kernel K(s;x, y) smooth on (0,∞)×M×M . K(s) is positivity
preserving and contractive on L2(E).

A.2 Main theorem

Theorem A.1 (Spectral positivity and ghost freedom). Let R be a Laplace-
type recursion operator of the form (56) on a compact Riemannian manifold
(M, g). Then R is positive self-adjoint, and the corresponding Hessian kernel
Ĥ(p2) admits a representation

Ĥ(p2) =
∫ ∞

0
e−sp2

dµ(s), p2 ≥ 0, (59)
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where dµ(s) is a positive measure determined by the spectral resolution of
R. Consequently Ĥ(p2) is an entire, completely monotone function of p2,
and no additional poles or ghost degrees of freedom appear in the ultraviolet
sector of MQG.

A.3 Proof of Theorem A.1

We break the proof into three steps: operator theoretic properties of R, the
heat semigroup and spectral calculus, and the Laplace-Stieltjes representa-
tion with positivity and monotonicity.

Lemma A.2 (Self-adjointness and lower boundedness). Let R = −∇∗∇ +
V with V = V ∗ ∈ C∞(End(E)). Then the Friedrichs extension of R on
C∞(E) is self-adjoint on L2(E) with domain H2(E), elliptic and bounded
below. After adding a constant multiple of the identity, if necessary, one
may assume R ≥ 0.

Proof. Elliptic regularity on compact M implies essential self-adjointness on
C∞(E) with domain H2(E). Since V is bounded and self-adjoint, −∇∗∇ is
non-negative and the Kato-Rellich theorem gives that R is self-adjoint and
bounded below. Shifting by a constant does not affect the conclusions of
the theorem.

Lemma A.3 (Heat semi-group and spectral resolution). For s > 0 the oper-
ator K(s) = e−sR is a strongly continuous contraction semi-group on L2(E)
with smooth kernel K(s;x, y). There exists a projection-valued measure Eλ

on [0,∞) such that

R =
∫

[0,∞)
λ dEλ, e−sR =

∫
[0,∞)

e−sλ dEλ. (60)

Proof. By Lemma A.2, R is self-adjoint and non-negative and, therefore,
generates a strongly continuous contraction semi-group with smooth kernel
on a compact manifold. The spectral theorem yields (60).

Lemma A.4 (Admissible regulators and second variation). Let f : [0,∞) →
R be an admissible regulator with a positive Laplace transform weight f̂ ∈
L1

loc([0,∞)), namely

f(x) =
∫ ∞

0
f̂(s) e−sx ds, f̂(s) ≥ 0 a.e. . (61)
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Consider the spectral functional A(R) = Tr f(R). For a smooth one-parameter
family Rτ with R0 = R and Ṙ = d

dτ Rτ |τ=0 self-adjoint, the second variation
reads

d2

dτ2

∣∣∣
τ=0

Tr f(Rτ ) =
∫ ∞

0
f̂(s)

∫ s

0
Tr
[
e−(s−u)R Ṙ e−uR Ṙ

]
du ds. (62)

Proof. Use (61) and the Duhamel formula d
dτ e

−sRτ = −
∫ s

0 e
−(s−u)Rτ Ṙτe

−uRτdu.
Twice differentiating under the trace and evaluating at τ = 0 yields (62).
Fubini is justified by positivity and local integrability of f̂ together with
trace-class of the heat kernel on compact M for each s > 0.

Lemma A.5 (Positivity of the quadratic form density). For Ṙ = Ṙ∗ and
0 ≤ u ≤ s,

Tr
[
e−(s−u)R Ṙ e−uR Ṙ

]
= Tr[X∗X] ≥ 0, X ≡ e−uR/2 Ṙ e−(s−u)R/2.

(63)

Proof. Since R is self-adjoint and non-negative, the semi-group factors as
indicated. Then X∗ = e−(s−u)R/2 Ṙ e−uR/2 and X∗X is positive – therefore
the trace is non-negative.

Lemma A.6 (Laplace-Stieltjes representation of the form factor). Let Ĥ(p2)
denote the momentum-space Hessian kernel on the physical subspace asso-
ciated with the second variation (62). Then there exists a positive Radon
measure dµ(s) on [0,∞) such that

Ĥ(p2) =
∫ ∞

0
e−sp2

dµ(s), p2 ≥ 0. (64)

Proof. For Laplace-type R, the quadratic kernel factors through the heat
semi-group as in (62). Upon projecting to a momentum eigenmode with
eigenvalue p2 of the scalar Laplacian on the physical subspace, each heat
operator contributes a factor e−up2 or e−(s−u)p2 – therefore, the dependence
on p2 enters only through e−sp2 . Define

dµ(s) ≡ f̂(s)
(∫ s

0
Tr
[
e−(s−u)R Ṙ e−uR Ṙ

]
du

)
ds.

By Lemma A.5 and f̂(s) ≥ 0, dµ is a positive measure. Substituting this
into (62) and reading off the p2 dependence yields (64).
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Lemma A.7 (Complete monotonicity and holomorphy). The function Ĥ(p2)
in (64) is completely monotone on [0,∞):

(−1)n dn

d(p2)n
Ĥ(p2) ≥ 0, n = 0, 1, 2, . . .

and holomorphic for Re p2 > 0. If, in addition, dµ has finite exponential mo-
ments of all orders (for example when f̂ decays faster than any exponential),
then Ĥ extends to an entire function of p2.

Proof. Bernstein’s theorem implies that Laplace-Stieltjes transforms of pos-
itive measures are completely monotone. Holomorphy for Re p2 > 0 follows
from dominated convergence since |e−sp2 | ≤ e−s Re p2 and µ is locally finite.
If
∫∞

0 eαs dµ(s) < ∞ for all α > 0, the integral converges for all p2 ∈ C,
yielding an entire extension.

Lemma A.8 (Ghost freedom). Assume Ĥ(p2) > 0 for p2 ≥ 0; this holds
for nontrivial f̂ and Ṙ ≠ 0 by (64). Then the quadratic propagator on the
physical subspace has at most the massless pole at p2 = 0 and no additional
real poles.

Proof. On the physical subspace, the quadratic operator takes the form
p2 Ĥ(p2) up to positive normalisations and projectors. Since Ĥ(p2) > 0
for p2 ≥ 0, the only zero of p2 Ĥ(p2) on the real axis is at p2 = 0. Com-
plete monotonicity also forbids oscillatory sign changes that could generate
additional real poles upon inversion.

Proof of Theorem A.1. Combine Lemmas A.2 and A.3 for the operator frame-
work, then Lemmas A.4–A.6 to obtain the Laplace-Stieltjes representation
(59) with a positive measure dµ. Lemma A.7 yields complete monotonicity
and holomorphy for Re p2 > 0, with entire extension under mild decay of
f̂ . Finally Lemma A.8 gives the absence of extra real poles and thus ghost
freedom at quadratic order.

Remarks on scope

• The compactness of (M, g) ensures trace-class heat kernels and discrete
spectrum. Extensions to non-compact M require control of essential
spectrum and heat kernel bounds; the Laplace-Stieltjes conclusion re-
mains valid under standard Gaussian off-diagonal estimates.
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• For the Gaussian regulator f(x) = e−x used in the main text, f̂(s) =
δ(s − 1) and dµ is supported at a single s, so Ĥ(p2) is entire and
equals e−p2 times a positive normalisation, which matches the Track
A example.
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B Mixing coefficients on curved manifolds
This appendix establishes, in a background–independent and covariant way,
that the dimension–six curvature–gauge operators and their coefficients (c1, c2, c3)
are fixed by the Seeley–DeWitt coefficient a3(x) of a Laplace–type opera-
tor on the gauge bundle. This upgrades the FRW example of Section 2 to
arbitrary smooth backgrounds (M, g).

B.1 Setup and operator class

Let (M, g) be a smooth compact 4–manifold without boundary. Let E → M
be a Hermitian vector bundle carrying a unitary representation of the gauge
group, with connection Aµ and curvature Ωµν = [∇µ,∇ν ] = Fµν . Consider
a Laplace–type operator on sections of E,

∆A = − gµν∇µ∇ν + E , E ∈ C∞(End(E))∗, (65)

where ∇ is the total covariant derivative (Levi–Civita plus Aµ) and E is a
smooth self–adjoint endomorphism (bundle mass/curvature term). Let f be
an admissible regulator with Laplace transform density f̂(s) ≥ 0:

f(x) =
∫ ∞

0
f̂(s) e−sx ds. (66)

Define the spectral functional

C[g,A] = Tr f
(∆A

Λ2

)
. (67)

B.2 Heat kernel and curvature expansion

By the spectral theorem and (66),

C[g,A] =
∫ ∞

0
f̂(s) Tr e−s∆A/Λ2

ds. (68)

For Laplace–type ∆A on a compact manifold, the heat trace admits the local
asymptotic expansion (Seeley–DeWitt)

Tr e−t∆A ∼
∞∑

n=0
t(n−4)/2

∫
M
d4x

√
g an(x; ∆A), t ↓ 0, (69)

where an(x) are universal polynomials in the Riemann tensor, Ωµν , E , and
their covariant derivatives 14 , 15 .

In d = 4, the **dimension–six** part (our target) comes from n = 6:[
C[g,A]

]
d=6

= Λ−2
( ∫ ∞

0
f̂(s) s ds

) ∫
M
d4x

√
g a3(x; ∆A). (70)
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B.3 Tensor basis and projection

For Laplace–type operators on bundles, a3(x) contains a linear combination
of the independent curvature–gauge scalars at mass dimension six:

a3(x; ∆A) ⊃ α1R tr (ΩµνΩµν)+α2Rµν tr (ΩµρΩν
ρ)+α3Rµνρσ tr (ΩµνΩρσ)+· · · ,

(71)
where “· · · ” denotes total derivatives and terms with derivatives of curvature
(which can be removed or reshuffled by field redefinitions when matching to
the quadratic, on–shell Hessian sector). Identifying Ωµν with Fµν , the three
displayed tensors span the basis used in the main text.

Theorem B.1 (Covariant determination of c1, c2, c3). Under the assump-
tions above, the dimension–six curvature–gauge sector of C[g,A] is∫

M
d4x

√
g
(
c1R trF 2 + c2Rµν tr(FµρF ν

ρ) + c3Rµνρσ tr(FµνF ρσ)
)
, (72)

with
ci = 1

(4π)2 βi

( ∫ ∞

0
f̂(s) s ds

) 1
Λ2 , i = 1, 2, 3, (73)

where the βi are universal numerical constants determined solely by the
Gilkey–DeWitt coefficient a3 for the operator class (65) (and the chosen
normalisation of tr). Thus (c1, c2, c3) are background–independent function-
als of f and the bundle data.

Proof sketch. Insert the expansion (69) into (68) and extract the n = 6 term
to obtain (70). The local invariant content of a3 for a general Laplace–type
operator is standard; see 14 , 15 . Project a3 onto the basis (71); the coef-
ficients of each tensor structure are universal numbers β̃i that depend only
on the operator class. After converting Ωµν to Fµν and matching normalisa-
tions of traces, one obtains (72) with ci proportional to the spectral moment∫
f̂(s)s ds divided by Λ2. The normalisation factor (4π)−2 is the standard 4D

heat kernel prefactor. This yields (73) with βi the operator–class–dependent
numbers.

Remarks

• The result is **background–independent**: different spacetimes change
only the values of the local curvature tensors in (72), not the constants
ci.

• For the Gaussian regulator f(x) = e−x one has f̂(s) = δ(s − 1) and∫
f̂(s)s ds = 1, so ci = βi/[(4π)2Λ2].
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• The precise βi for a given operator class can be read off from the tab-
ulated a3 coefficients in 14 , 15 . They depend on the representation
normalisation through tr(T aT b) = κ δab.

B.4 Universal a3 tensor structures and projection

For a Laplace–type operator ∆A = −gµν∇µ∇ν + E acting on a vector bun-
dle with unitary connection, the local coefficient a3(x; ∆A) has a universal
decomposition into curvature invariants 14 , 15 . Restricting to the part
bilinear in the gauge curvature and linear in the spacetime curvature, one
can write

a3(x; ∆A)
∣∣∣
RF 2

= τ1R tr(FµνF
µν)+τ2Rµν tr(FµρF ν

ρ)+τ3Rµνρσ tr(FµνF ρσ) + ∇·(· · · ),
(74)

where τi are operator–class–dependent universal constants and ∇ · (· · · ) de-
notes total derivatives and terms with derivatives of curvatures (which do
not contribute to the quadratic, on–shell Hessian sector after field redefini-
tions; see Section B.7 below). The overall normalisation of tr is fixed by
tr(T aT b) = κ δab in the chosen representation.

Comparing (74) with (72) and using (73) gives the identification

βi = (4π)2 τi , ci = τi

( ∫ ∞

0
f̂(s) s ds

) 1
Λ2 , i = 1, 2, 3. (75)

Thus it suffices to compute the τi once for the operator class.

B.5 Background triad for algebraic extraction of τi

Although the τi can be read directly from the tabulated a3 coefficient for
∆A, it is sometimes convenient to extract them by evaluating (74) on three
diagnostic background classes that project onto linearly independent com-
binations:

(I) Ricci–flat backgrounds. Take Rµν = 0 but Rµνρσ ̸= 0 (e.g. a vac-
uum gravitational wave or Schwarzschild exterior). Then (74) reduces to

a3
∣∣∣(I)
RF 2

= τ3Rµνρσ tr(FµνF ρσ),

so a single nonzero evaluation fixes τ3.
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(II) Einstein spaces. Take Rµν = R
4 gµν with R ̸= 0 and arbitrary Weyl

curvature. Using Rµν tr(FµρF ν
ρ) = R

4 tr(FµνF
µν), one obtains

a3
∣∣∣(II)
RF 2

=
(
τ1 + 1

4τ2
)
R tr(FµνF

µν) + τ3Cµνρσ tr(FµνF ρσ),

where Cµνρσ is the Weyl tensor. Combining with the value of τ3 from (I)
isolates τ1 + 1

4τ2.

(III) Conformally flat, non–Einstein backgrounds. Take Cµνρσ = 0
but Rµν ̸= R

4 gµν (e.g. inhomogeneous FRW). Then

a3
∣∣∣(III)
RF 2

= τ1R tr(FµνF
µν) + τ2Rµν tr(FµρF ν

ρ),

which, together with (II), separates τ1 and τ2.
In practice one can use these three projections as a check on the direct

readout from the a3 tables. Since a3 is local and universal, the τi obtained
in this way do not depend on the particular representative of each class.

B.6 Example: minimal Laplace–type operator on the adjoint
bundle

Consider the minimal Laplace–type operator on the adjoint bundle,
∆adj

A = −gµνDµDν , Dµ = ∇µ + [Aµ, ·], (76)
with E = 0. For this class, the a3 coefficient bilinear in Fµν and linear in
spacetime curvature has the form (74) with universal numbers τadj

i that de-
pend only on the dimension and on the chosen trace normalisation. Match-
ing to the standard Gilkey basis one finds

τadj
1 = α1 κ, τadj

2 = α2 κ, τadj
3 = α3 κ, (77)

where κ is defined by tr(T aT b) = κ δab and αi are the universal scalar
coefficients quoted in the heat kernel literature for Laplace–type operators
on vector bundles. Substituting (77) into (75) yields

cadj
i = αi κ

( ∫ ∞

0
f̂(s) s ds

) 1
Λ2 , i = 1, 2, 3.

For the Gaussian regulator f(x) = e−x one has
∫
f̂(s)s ds = 1, so

cadj
i = αi κΛ−2.

This shows explicitly how the FRW result cR = Λ−2 in the main text corre-
sponds to α1 κ = 1 in that normalisation, while α2 and α3 fix the Ricci and
Weyl mixing strengths.
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Comment on nonminimal operators. If E ̸= 0 includes curvature en-
domorphisms (for example E ∝ R 1 in a nonminimal gauge choice), the same
procedure applies. The τi then depend on the decomposition of E into the
Gilkey basis; they are still universal numbers for the given operator class
and trace convention.

B.7 Field redefinitions and removal of derivative terms

The coefficient a3 contains, in addition to (74), total derivatives and terms
with covariant derivatives of curvature, e.g.

∇αR tr(FαβAβ), ∇αtr(Fαβ∇µFµβ),

and similar. At quadratic order in fluctuations and for on–shell backgrounds,
these terms can be removed from the quadratic effective action by local
field redefinitions and integrations by parts, without affecting the physical
Hessian coefficients. More precisely:

Lemma B.2 (Quadratic equivalence under local redefinitions). Let S[A, g]
be a local functional whose quadratic part contains terms of the form

∫ √
g∇·

J or
∫ √

gOµν(g) ∇µXν , with Oµν a local tensor made of curvature. Then
there exists a local field redefinition Aµ 7→ Aµ + δAµ with δAµ = O(∇X)µ

and integrations by parts such that these terms do not contribute to the
quadratic Hessian on the physical transverse subspace.

Proof sketch. Work in background field gauge and decompose Aµ = A⊥
µ +

∇µϕ. Projecting to the transverse sector eliminates pure divergence struc-
tures. The remaining derivative couplings can be cancelled by choosing δAµ

to complete squares at quadratic order. Since we only modify higher order
terms or pure gauges, the physical quadratic kernel is unchanged.

By Lemma B.2, only the three scalars in (74) are relevant for the quadratic
Hessian coefficients. All derivative and boundary terms can be ignored for
the purpose of extracting (c1, c2, c3).

B.8 Summary of Appendix B

The main conclusions are:

• The dimension–six curvature–gauge mixing in MQG is fixed by the
universal a3 coefficient of a Laplace–type operator on the gauge bundle.
No background–specific parameter enters.
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• The coefficients are

ci = τi

( ∫ ∞

0
f̂(s) s ds

)
Λ−2, i = 1, 2, 3,

with τi read from the Gilkey–DeWitt tables or extracted by the back-
ground triad of Section B.5.

• For the Gaussian regulator, ci = τi Λ−2. The FRW closed form in the
main text realises this with i = 1 and provides a cross–check for τ1.
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