There is a newer version of the record available.

Published April 1, 2025 | Version 4.0
Dataset Open

The UNICORN Challenge: public few-shots

  • 1. Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
  • 2. Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands

Description

* Shared first authors: Clément Grisi, Michelle Stegeman, Judith Lefkes, Marina D'Amato, Rianne Weber, Luc Builtjes, Lena Philipp, Fennie van der Graaf, Joeran Bosma

** Shared last authors: Alessa Hering, Francesco Ciompi 

The UNICORN (Unified beNchmark for Imaging in COmputational pathology, Radiology and Natural language) challenge is an innovative benchmarking challenge that is part of the MICCAI 2025 Lighthouse Challenges. The goal of UNICORN is to address the lack of a comprehensive, public benchmark for evaluating the performance of multimodal foundation models in medical imaging. It provides a unified set of 20 tasks that span both vision and language in the fields of radiology and digital pathology.

This dataset includes publicly available few-shots cases for the challenge tasks. These examples aim to provide participants with an understanding of the data structure for each of the 20 tasks and can be used for local development. 

Files

Task01_classifying_he_prostate_biopsies_into_isup_scores.zip

Files (29.8 GB)

Name Size Download all
md5:2c548bd8e38cee727d1bcf11e83c224e
914.6 MB Preview Download
md5:de1e9048359d4a4af0edcebaba5f9e07
87.9 MB Preview Download
md5:2cfa867f13d2f2d43c2207ac57c8c1a3
15.8 GB Preview Download
md5:c2a4c9d3359e0bc2387e3225bea79ce4
6.3 GB Preview Download
md5:504488aeb01dc5ee4ebac959bee61d87
19.4 MB Preview Download
md5:4472bfeedf54961baca28f75538cece1
389.4 MB Preview Download
md5:20e95c46a76a71bca5dc977594d7ff2c
3.5 GB Preview Download
md5:b83cb8ee5409114985a45ba0cd0ff919
455.7 MB Preview Download
md5:212bf0e324296bfcf0c9ef4c1fb3f641
52.7 MB Preview Download
md5:06f655fc278a59a2952bc7c2d0d2d7c2
502.9 MB Preview Download
md5:f327acce0f443f675476f24ce149125d
440.2 MB Preview Download
md5:132349dee2e38e770c4f95587669283b
4.0 kB Preview Download
md5:668f5b0422785f2bdf191d34e3a89d51
1.6 kB Preview Download
md5:51c0ed7f0af1817bc3385d04b9d8f28b
1.8 kB Preview Download
md5:b3dcb0fa08369cae35dba3f053b9569d
1.8 kB Preview Download
md5:38641c5662fa502dd964b867ac529ea7
1.3 kB Preview Download
md5:a69ec56f3831ed74bcf8fd2d12a1c6af
4.5 kB Preview Download
md5:8e0195f1c54a3f5479d017dac41e43b3
1.8 kB Preview Download
md5:90b99df99cfebf23f012926233fb33dc
2.4 kB Preview Download
md5:46b295917f4a34dde9e190d749f434af
1.4 GB Preview Download

Additional details

Related works

Is documented by
Other: 10.5281/zenodo.13981072 (DOI)

Dates

Created
2025-02-07