Published June 17, 2025 | Version 7.0
Dataset Open

The UNICORN Challenge: public few-shots

  • 1. Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
  • 2. Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands

Description

* Shared first authors: Clément Grisi, Michelle Stegeman, Judith Lefkes, Marina D'Amato, Rianne Weber, Luc Builtjes, Lena Philipp, Fennie van der Graaf, Joeran Bosma

** Shared last authors: Alessa Hering, Francesco Ciompi 

The UNICORN (Unified beNchmark for Imaging in COmputational pathology, Radiology and Natural language) challenge is an innovative benchmarking challenge that is part of the MICCAI 2025 Lighthouse Challenges. The goal of UNICORN is to address the lack of a comprehensive, public benchmark for evaluating the performance of multimodal foundation models in medical imaging. It provides a unified set of 20 tasks that span both vision and language in the fields of radiology and digital pathology.

This dataset includes publicly available few-shots cases for the challenge tasks. These examples aim to provide participants with an understanding of the data structure for each of the 20 tasks and can be used for local development. 

Files

Task01_classifying_he_prostate_biopsies_into_isup_scores.zip

Files (29.9 GB)

Name Size Download all
md5:f036a76b1f158f70ec20363eadc55945
914.6 MB Preview Download
md5:a82c2ce1b75864a689fe529cf96605ac
88.0 MB Preview Download
md5:48111b807abca00e5bc05b0e93781584
15.8 GB Preview Download
md5:5318792447ecdc9c88c7b603d62dbd93
6.3 GB Preview Download
md5:c8525e46aa08b6c8be0d3034893ee818
19.4 MB Preview Download
md5:596e121d3f629055ffe035b81bd45ec5
389.5 MB Preview Download
md5:f611cd2e8d3950ede58dedca3eaa0143
3.5 GB Preview Download
md5:d25fc99f8609c3a1c75e482809f640ca
535.5 MB Preview Download
md5:6b219ec50f18b290861048ada2681dda
21.3 MB Preview Download
md5:5ff8d15b7af583dff3fa63239644f973
502.9 MB Preview Download
md5:ce1e85fdc8e973c0f95904d86b0ae38b
440.2 MB Preview Download
md5:c40ae8559b7a6336032be3f5b7ecbc58
20.0 kB Preview Download
md5:87087192a0d716ca7277fbd645fcc204
4.3 kB Preview Download
md5:eb7dd7f9b34a3f17451e7e7283930e9c
4.6 kB Preview Download
md5:c2a26e755ebc576bd9c7c8f8febc9199
3.4 kB Preview Download
md5:37486c8880c1fdfb65992c147cce77c5
3.2 kB Preview Download
md5:808376b5c90695f8e90734ec663db87f
6.4 kB Preview Download
md5:b62e4c2d403777170a0181d75d826a53
5.3 kB Preview Download
md5:55d273472bb57bc481feb7ed788521e8
9.5 kB Preview Download
md5:389dc2c2e3a79c74560fdee145b51af9
1.4 GB Preview Download

Additional details

Related works

Is documented by
Other: 10.5281/zenodo.13981072 (DOI)

Dates

Created
2025-02-07