Published February 6, 2025 | Version v1
Data paper Open

Data and code for: A Holistic Data-Driven Approach to Synthesis Predictions of Colloidal Nanocrystal Shapes

  • 1. ROR icon École Polytechnique Fédérale de Lausanne
  • 2. ROR icon NCCR Catalysis
  • 1. ROR icon École Polytechnique Fédérale de Lausanne
  • 2. ROR icon NCCR Catalysis

Description

The ability to precisely design colloidal nanocrystals (NCs) has far-reaching implications in optoelectronics, catalysis, biomedicine, and beyond. Achieving such control is generally based on a trial-and-error approach. Data-driven synthesis holds promise to advance both discovery and mechanistic knowledge. Herein, we contribute to advancing the current state of the art in the chemical synthesis of colloidal NCs by proposing a machine-learning toolbox that operates in a low-data regime yet comprehensive of the most typical parameters relevant for colloidal NC synthesis. The developed toolbox predicts the NC shape given the reaction conditions and proposes reaction conditions given a target NC shape using Cu NCs as the model system. By classifying NC shapes on a continuous energy scale, we synthesize an unreported shape, which is the Cu rhombic dodecahedron. This holistic approach integrates data-driven and computational tools with materials chemistry. Such development is promising to greatly accelerate materials discovery and mechanistic understanding, thus advancing the field of tailored materials with atomic-scale precision tunability.

Files

Read_me.txt

Files (7.4 MB)

Name Size Download all
md5:cceea75931b6c56900b83b585a213813
38.8 kB Preview Download
md5:f6e1c4672c13b6d8a968834746853af4
38.9 kB Preview Download
md5:03fb3ef9f455e6723d289d4b2b160ce1
39.1 kB Preview Download
md5:0f5465e84c551de0426f7bc809ea12ce
38.9 kB Preview Download
md5:465cdb22f93d56f018db953ee738cbc2
39.1 kB Preview Download
md5:607b9d34b39ab71ec60ea0a7cf30b35b
38.9 kB Preview Download
md5:7a393d63be1dafffabcc20ad29b8ca3e
25.6 kB Preview Download
md5:66417641df559327207e654b7d26286c
1.2 MB Preview Download
md5:e1778b9eb8c727be91171a74f09f095b
1.2 MB Preview Download
md5:11dfff4bf0ccef0c6a5a684759c542e8
863 Bytes Preview Download
md5:455c4abddf6ef09ded3fff9032cbe1e2
25.7 kB Preview Download
md5:9ab66b22f77b57ab69c8effdea81beb6
25.8 kB Preview Download
md5:b1577f4a2c98bca7d17846cb076b2ef5
1.2 MB Preview Download
md5:6acfd53282e899863ae6940543c65135
1.2 MB Preview Download
md5:3c524903471b88c3957c4d67b70f4e50
1.2 MB Preview Download
md5:c8dd529170cc8206cf4be4cf452c5474
1.2 MB Preview Download
md5:92c6f752ed27581fcccba0a20e622037
1.8 kB Preview Download

Additional details

Related works

Is supplement to
Journal article: 10.1021/jacs.4c17283 (DOI)

Funding

Swiss National Science Foundation
NCCR Catalysis (phase II) 225147

Software

Repository URL
https://github.com/schwallergroup/boludo
Programming language
Python
Development Status
Active