Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes
Creators
- Kim, Minsoo (Researcher)1
- Kim, Donghoon (Researcher)1
- Mirjolet, Mathieu (Researcher)1
- Shepelin, Nick A. (Researcher)2
- Lippert, Thomas (Researcher)3
- Choi, Hongsoo (Researcher)4
- Puigmartí-Luis, Josep (Researcher)5
- Nelson, Bradley J. (Researcher)1
- Chen, Xiang-Zhong (Researcher)1
- Pané, Salvador (Researcher)1
- 1. Multi-Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich
- 2. PSI Center for Neutron and Muon Sciences Paul Scherrer Institut
- 3. PSI Center for Neutron and Muon Sciences
- 4. Department of Robotics & Mechatronics Engineering DGIST-ETH Microrobotics Research Cente
- 5. Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional Universitat de Barcelona
Description
Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices.
Files
Advanced Materials - 2024 - Kim - Shape‐Morphing in Oxide Ceramic Kirigami Nanomembranes.pdf
Files
(2.8 MB)
Name | Size | Download all |
---|---|---|
md5:8eb4b7f0589970fced7804c2d1166c27
|
2.8 MB | Preview Download |