Published April 12, 2024 | Version v1
Journal Open

nSimplex Zen: a novel dimensionality reduction for euclidean and Hilbert spaces

  • 1. ROR icon University of St Andrews
  • 2. Istituto di Scienza e Tecnologie dell'Informazione Alessandro Faedo Consiglio Nazionale delle Ricerche

Description

Dimensionality reduction techniques map values from a high dimensional space to one with a lower dimension. The result is a space which requires less physical memory and has a faster distance calculation. These techniques are widely used where required properties of the reduced-dimension space give an acceptable accuracy with respect to the original space. Many such transforms have been described. They have been classified in two main groups: linear and topological. Linear methods such as Principal Component Analysis (PCA) and Random Projection (RP) define matrix-based transforms into a lower dimension of Euclidean space. Topological methods such as Multidimensional Scaling (MDS) attempt to preserve higher-level aspects such as the nearest-neighbour relation, and some may be applied to non-Euclidean spaces. Here, we introduce nSimplex Zen, a novel topological method of reducing dimensionality. Like MDS, it relies only upon pairwise distances measured in the original space. The use of distances, rather than coordinates, allows the technique to be applied to both Euclidean and other Hilbert spaces, including those governed by Cosine, Jensen–Shannon and Quadratic Form distances. We show that in almost all cases, due to geometric properties of high-dimensional spaces, our new technique gives better properties than others, especially with reduction to very low dimensions.

Files

Hilbert_Apex_Space_Mappings (1).pdf

Files (7.3 MB)

Name Size Download all
md5:d4959e7fd258ff9708e3ecca8096aad9
7.3 MB Preview Download

Additional details

Funding

AI4Media – A European Excellence Centre for Media, Society and Democracy 951911
European Commission
SUN – Social and hUman ceNtered XR 101092612
European Commission
National Centre for HPC, Big Data and Quantum Computing - PNRR CUP B93C22000620006
European Union