Vortex Circular Dichroism: An experimental technique to assess the scalar/vectorial regime of diffraction
- 1. Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- 2. Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
Description
Background: In classical electrodynamics, light-matter interactions are modeled using Maxwell equations. The solution of Maxwell equations, which is typically given by means of the electric and magnetic field, is vectorial in nature. Yet it is well known that light-matter interactions can be approximately described in a scalar (polarization-independent) way for many optical applications. While the accuracy of the scalar approximation can be theoretically computed, to the best of our knowledge, it has never been determined experimentally. Here, we show that the vectoriality of diffraction can be probed with a new technique: Vortex Circular Dichroism (VCD).
Methods: We measure the differential transmission of left and right circularly polarized vortex beams through a set of single circular nano-apertures with diameters ranging from 150 to 1950 nm. We observe that VCD > 0 for smaller diameters, VCD ≲ 0 for intermediate values and VCD ≈ 0 for larger values of the diameter.
We also carry out Mie Theory simulations for spheres with the same diameters as the nanoholes and observe that the theoretical and experimental VCD values follow the same trend line.
Results:We relate VCD ≠ 0 to a vectorial diffraction, and VCD ≈ 0 to a scalar one. This is corroborated by the simulations, which show that a diffraction process characterized by a VCD ≠ 0 (VCD ≠ 0) is polarization-independent (polarization-dependent).
Conclusions:Overall, our results give a wealth of evidence that VCD allows for the experimental assessment of the scalar/vectorial regime of diffraction.
Files
openreseurope-2-16119.pdf
Files
(3.1 MB)
Name | Size | Download all |
---|---|---|
md5:728dcf7f0c2ded2bf01e2c0f3a71a26e
|
3.1 MB | Preview Download |
Additional details
References
- Saleh BEA, Teich MC (1991). Fundamentals of photonics. doi:10.1002/0471213748
- Jackson JD (1999). Classical Electrodynamics: Third Edition. Am J Phys. doi:10.1119/1.19136
- Gupta SD, Ghosh N, Banerjee A (2015). Wave optics: Basic concepts and contemporary trends. doi:10.1201/b19330
- Sirohi RS (1993). Wave optics and its applications.
- Lax M, Louisell WH, McKnight WB (1975). From maxwell to paraxial wave optics. Phys Rev A. doi:10.1103/PhysRevA.11.1365
- Vaveliuk P, Ruiz B, Lencina A (2007). Limits of the paraxial approximation in laser beams. Opt Lett. doi:10.1364/ol.32.000927
- Mie G (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik. doi:10.1002/andp.19083300302
- Gouesbet G, Gréhan G (2011). Generalized Lorenz-Mie Theories. doi:10.1007/978-3-642-17194-9
- Zambrana-Puyalto X, Vidal X, Fernandez-Corbaton I (2016). Far-field measurements of vortex beams interacting with nanoholes. Sci Rep. doi:10.1038/srep22185
- Barron LD (2009). Molecular light scattering and optical activity. doi:10.1017/CBO9780511535468
- Zambrana-Puyalto X, Vidal X, Molina-Terriza G (2014). Angular momentum-induced circular dichroism in non-chiral nanostructures. Nat Commun. doi:10.1038/ncomms5922
- Zambrana-Puyalto X, Vidal X, Molina-Terriza G (2012). Excitation of single multipolar modes with engineered cylindrically symmetric fields. Opt Express. doi:10.1364/OE.20.024536
- Marrucci L, Manzo C, Paparo D (2006). Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. doi:10.1103/PhysRevLett.96.163905
- Bohren CF, Huffman DR (1983). Absorption and scattering of light by small particles.
- Zambrana-Puyalto X (2014). Control and characterization of nano-structures with the symmetries of light.
- Novotny L, Hecht B (2006). Principles of Nano-Optics. doi:10.1017/CBO9780511813535
- Rose ME (1957). Elementary Theory of Angular Momentum.
- Zambrana-Puyalto X, Molina-Terriza G (2013). The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes. J Quant Spectrosc Radiat Transf. doi:10.1016/j.jqsrt.2012.10.010
- Zambrana-Puyalto X (2022). Zenodo.
- Fernandez-Corbaton I, Zambrana-Puyalto X, Molina-Terriza G (2012). Helicity and angular momen-tum: A symmetry-based framework for the study of light-matter interactions. Phys Rev A. doi:10.1103/PhysRevA.86.042103
- Zambrana-Puyalto X, Vidal X, Woźniak P (2018). Tailoring multipolar mie scattering with helicity and angular momentum. ACS Photonics. doi:10.1021/acsphotonics.8b00268
- Ricci F, Löffler W, Van Exter MP (2012). Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer. Opt Express. doi:10.1364/OE.20.022961
- Neo R, Tan SJ, Zambrana-Puyalto X (2014). Correcting vortex splitting in higher order vortex beams. Opt Express. doi:10.1364/OE.22.009920
- Banzer P, Kindler J, Quabis S (2010). Extraordinary transmission through a single coaxial aperture in a thin metal film. Opt Express. doi:10.1364/OE.18.010896
- Woźniak P, Banzer P, Leuchs G (2015). Selective switching of individual multipole resonances in single dielectric nanoparticles. Laser Photonics Rev. doi:10.1002/lpor.201400188