Published September 4, 2023 | Version 2
Journal article Open

An effective solution to boost generation from waves: Benefits of a hybrid energy storage system integration to wave energy converter in grid-connected systems

  • 1. Department of Engineering, University of Perugia, Via G. Duranti 1/A4, Perugia, 06125, Italy
  • 2. Power Engineering Faculty, University Politehnica of Bucharest, Splaiul Independentei 313, Bucharest, 060042, Romania
  • 3. VGA srl, Via Ugo Foscolo 1, Deruta, 06053, Italy
  • 4. Cruz Atcheson Consulting Engineers, Rua Fernando Namora 45 B 6 B, Lisboa, 1600 451, Portugal

Description

Background: Wave energy represents one of the most promising renewable energies due to its great theoretical potential. Nevertheless, the electrical compliance of grid-connected systems is a great issue nowadays, due to the highly stochastic nature of wave energy.

Methods: In this paper, a Hybrid Energy Storage System (HESS) consisting of a Li-ion battery and a flywheel is coupled to a Wave Energy Converter (WEC) that operates in grid connected mode. The study is performed using real yearly wave power profiles relating to three different sites located along the European coasts. The Simultaneous Perturbation Stochastic Approximation (SPSA) principle is implemented as real-time power management strategy for HESS in wave energy conversion systems.

Results: Obtained results demonstrate how the proposed HESS and the implementation of the SPSA power management coupled to a WEC allow a reduction of more than 80% of power oscillations at the Point of Common Coupling (PCC), while proving the robustness of the developed management strategy over the investigated sites. Moreover, the average energy penalty due to the HESS integration results slightly higher than 5% and battery solicitation is reduced by more than 64% with respect to the flywheel solicitation, contributing to extend its lifetime.

Conclusions: HESS integration in renewable generation systems maximizes the WEC production while smoothing the power at the PCC. Specifically, flywheel-battery HESS together with the implemented power management strategy could provide a great flexibility in the view of increasing power production from waves, strongly mitigating the variability of this source while enhancing grid safety and stability.

Files

openreseurope-2-17795.pdf

Files (8.5 MB)

Name Size Download all
md5:056124785d293b33f32316576266815b
8.5 MB Preview Download

Additional details

References

  • Barelli L, Bidini G, Bonucci F (2018). Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant. Energies. doi:10.3390/en11020396
  • Brahmendra Kumar GV, Sarojini RK, Palanisamy K (2019). Large scale renewable energy integration: Issues and solutions. Energies. doi:10.3390/en12101996
  • Qiao D, Haider R, Yan J (2020). Review of wave energy converter and design of mooring system. Sustain. doi:10.3390/su12198251
  • Pecher A, Kofoed JP (2017). Handbook of Ocean Wave Energy. doi:10.1007/978-3-319-39889-1
  • de O Falcão AF (2010). Wave energy utilization: A review of the technologies. Renew Sustain Energy Rev. doi:10.1016/j.rser.2009.11.003
  • (2014). Wave Energy Technology Brief.
  • (null). Data & Statistics.
  • Aderinto T, Li H (2018). Ocean Wave energy converters: Status and challenges. Energies. doi:10.3390/en11051250
  • Pierson WJ, Moskowitz L (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J Geophys Res. doi:10.1029/JZ069i024p05181
  • Hasselmann K, Barnett TP, Bouws E (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).
  • Ryabkova M, Karaev J, Guo J (2019). A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface. J Geophys Res Ocean. doi:10.1029/2018JC014804
  • Prendergast J, Li M, Sheng W (2020). A Study on the Effects of Wave Spectra on Wave Energy Conversions. IEEE J Ocean Eng. doi:10.1109/JOE.2018.2869636
  • Lvov YV, Polzin KL, Tabak EG (2004). Energy spectra of the ocean's internal wave field: Theory and observations. Phys Rev Lett. doi:10.1103/PhysRevLett.92.128501
  • Basso TS, DeBlasio R (2004). IEEE 1547 series of standards: Interconnection issues. IEEE Trans Power Electron. doi:10.1109/TPEL.2004.834000
  • Zahedi A (2011). Maximizing solar PV energy penetration using energy storage technology. Renew Sustain Energy Rev. doi:10.1016/j.rser.2010.09.011
  • Jabir M, Illias HA, Raza S (2017). Intermittent smoothing approaches for wind power output: A review. Energies. doi:10.3390/en10101572
  • Li X, Hui D, Lai X (2013). Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans Sustain Energy. doi:10.1109/TSTE.2013.2247428
  • Hu X, Xu L, Lin X (2020). Battery Lifetime Prognostics. Joule. doi:10.1016/j.joule.2019.11.018
  • Díaz-González F, Sumper A, Gomis-Bellmunt O (2013). Energy management of flywheel-based energy storage device for wind power smoothing. Appl Energy. doi:10.1016/j.apenergy.2013.04.029
  • Ma T, Yang H, Lu L (2015). Development of hybrid battery-supercapacitor energy storage for remote area renewable energy systems. Appl Energy. doi:10.1016/j.apenergy.2014.12.008
  • Mongird RT, Viswanathan V, Balducci P (2020). An evaluation of energy storage cost and performance characteristics. Energies. doi:10.3390/en13133307
  • Barelli L, Bidini G, Cherubini P (2019). How hybridization of energy storage technologies can provide additional flexibility and competitiveness to microgrids in the context of developing countries. Energies. doi:10.3390/en12163138
  • Hazra S, Bhattacharya S (2016). Hybrid energy storage system comprising of battery and ultra-capacitor for smoothing of oscillating wave energy. ECCE 2016 - IEEE Energy Convers Congr Expo Proc. doi:10.1109/ECCE.2016.7855172
  • Rojas-Delgado B, Alonso M, Amaris H (2019). Wave power output smoothing through the use of a high-speed kinetic buffer. Energies. doi:10.3390/en12112196
  • Torres J, Blanco M, Lafoz M (2020). Dimensioning methodology of energy storage systems for power smoothing in a wave energy conversion plant considering efficiency maps and filtering control techniques. Energies. doi:10.3390/en13133380
  • Wang L, Yu JY, Chen YT (2011). Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system. IET Renew Power Gener. doi:10.1049/iet-rpg.2010.0194
  • Yoshida T, Sanada M, Morimoto S (2012). Study of flywheel energy storage system for power leveling of wave power generation system. 15th International Conference on Electrical Machines and Systems (ICEMS).
  • Moreno-Torres P, Blanco M, Navarro G (2015). Power smoothing system for wave energy converters by means of a supercapacitor-based energy storage system. 2015 17th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2015. doi:10.1109/EPE.2015.7309312
  • Murray DB, Egan MG, Hayes JG (2009). Applications of Supercapacitor Energy Storage for a Wave Energy Converter System. Proceedings of the Eighth European Wave and Tidal Energy Conference.
  • Fang H, Lin S, Chu H (2016). Coordinated and stable control of a hybrid energy storage system for wave generation system. 12th World Congress on Intelligent Control and Automation (WCICA). doi:10.1109/WCICA.2016.7578601
  • Cheng L, Zhang F, Liu S (2020). Configuration method of hybrid energy storage system for high power density in More Electric Aircraft. J Power Sources. doi:10.1016/j.jpowsour.2019.227322
  • Nie Z, Xiao X, Kang Q (2013). SMES-Battery energy storage system for conditioning outputs from direct drive linear wave energy converters. IEEE Trans Appl Supercond. doi:10.1109/TASC.2013.2246852
  • Barelli L, Bidini G, Ottaviano PA (2022). Coupling Hybrid Energy Storage System to Regenerative Actuators in a More Electric Aircraft: Dynamic Performance Analysis and CO Emissions Assessment concerning the Italian Regional Aviation Scenario. J Energy Storage. doi:10.1016/j.est.2021.103776
  • Şahin ME, Blaabjerg F (2020). A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/simulink. Electron. doi:10.3390/electronics9010129
  • Barelli L, Bidini G, Bonucci F (2019). Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants. Energy. doi:10.1016/j.energy.2019.02.143
  • Byrne RH, Nguyen TA, Copp DA (2017). Energy Management and Optimization Methods for Grid Energy Storage Systems. IEEE Access. doi:10.1109/ACCESS.2017.2741578
  • Spall JC (1992). Multivariate Stochastic Approximation using a Simultaneous Perturbation Gradient Approximation. IEEE Trans Automat Contr. doi:10.1109/9.119632
  • Sadegh P, Spall JC (1998). Optimal Random Perturbations for Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Trans Automat Contr. doi:10.1109/9.720513
  • Spall JC (1998). An Overview of the Simultaneous Perturbation Method. Johns Hopkins Apl Tech Dig.
  • Spall JC (1997). A one-measurement form of simultaneous perturbation stochastic approximation. Automatica. doi:10.1016/S0005-1098(96)00149-5
  • Bahaj AS (2012). Generating electrical power from ocean resources.
  • Chawla A, Spindler DM, Tolman HL (2013). Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. doi:10.1016/j.ocemod.2012.07.005
  • (null). WEC-Sim (Wave Energy Converter SIMulator) — WEC-Sim documentation.
  • Castellini L, Alessandri G (2016). Dry and Wet Testing of a PTO Based on Recirculating Ballscrew Technology. 3rd Asian Wave and Tidal Energy Conference (AWTEC).
  • (2015). PD IEC / TS 62600-200 : 2013 BSI Standards Publication Marine energy — Wave, tidal and other water current converters energy converters — Power performance.
  • Ciupageanu DA, Barelli L, Ottaviano A (2019). Innovative power management of hybrid energy storage systems coupled to RES plants: the Simultaneous Perturbation Stochastic Approximation approach. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). doi:10.1109/ISGTEurope.2019.8905775
  • Spall JC (1998). Implementation of the Simultaneous Perturbation algorithm for Stochastic Optimization. Ieee Trans Aerosp Electron Syst. doi:10.1109/7.705889
  • Barelli L, Ciupageanu DA, Ottaviano A (2020). Stochastic power management strategy for hybrid energy storage systems to enhance large scale wind energy integration. J Energy Storage. doi:10.1016/j.est.2020.101650
  • Barelli L, Bidini G, Pelosi D (2021). Zenodo.