Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published March 28, 2024 | Version v1
Dataset Open

AIDERv2 (Aerial Image Dataset for Emergency Response Applications)

  • 1. KIOS Research and Innovation Center of Excellence

Description

SUMMARY OF DATASET
 
• This dataset consist of 167723 aerial images divided into 4 classes.
 
• The dataset contains three commonly occurring natural disasters
earthquake/collapsed buildings, flood, wildfire/fire, and a normal class; do not reflect any disaster
 
• The images can be loaded as numpy arrays using Python programming language and then used to train a Convolutional Neural Network to detect natural disasters from aerial images.
 
• The images are resized to 224x224x3 (heighty,width,channel number) when loaded as numpy arrays.
 
• The dataset is an extension of the AIDER dataset (Aerial Image Dataset for Emergency Response Applications). 
 
• Additional images were collected by open source databases and extracted images as frames of videos downloaded from YouTube. 
 
 
The table below shows the number of images in each set.
 
                              Train     Validation     Test     Total
     Earthquakes     1927     239                239     2405
              Floods     4063     505                502     5070
                   Fire     3509     439                436     4384
            Normal     3900     487                477     4864
                 Total     13399   1670              1654   16723
 
 
If you use this dataset please cite the following publications:
 
[1] Shianios, D., Kyrkou, C., Kolios, P.S. (2023). A Benchmark and Investigation of Deep-Learning-Based Techniques for Detecting Natural Disasters in Aerial Images. In: Tsapatsoulis, N., et al. Computer Analysis of Images and Patterns. CAIP 2023. Lecture Notes in Computer Science, vol 14185. Springer, Cham. https://doi.org/10.1007/978-3-031-44240-7_24
Link: https://link.springer.com/chapter/10.1007/978-3-031-44240-7_24
 
[2] D. Shianios, P. Kolios, C. Kyrkou, "DiRecNetV2: A Transformer-Enhanced Network for Aerial Disaster Recognition", SN Computer Science, 2024 (Accepted to Appear)
 
 
 
 
DATASET FOLDERS FORMAT
 
└───data
│   │
│   └───Dataset_Images
│       │   └───Train
│   │   │    |    └───Earthquake
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Flood
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Normal
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Wildfire
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│       │   └───Val
│   │   │    |    └───Earthquake
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Flood
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Normal
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Wildfire
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│       │   └───Test
│   │   │    |    └───Earthquake
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Flood
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Normal
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
│   │   │    |    └───Wildfire
│   │   │    | img (1).jpg
│   │   │    | img (2).jpg
│   │   │    | .....
 
 
 
 
 
DATA SOURCES AND DATA COLLECTION
 
OPEN SOURCE DATABASES
 
└───AIDER 
https://zenodo.org/record/3888300#.Yuu11nZBxD-
Kyrkou, C. and Theocharides, T., 2020. EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp.1687-1699.
 
└───ERA 
https://lcmou.github.io/ERA_Dataset/
Mou, L., Hua, Y., Jin, P. and Zhu, X.X., 2020. Era: A data set and deep learning benchmark for event recognition in aerial videos [software and data sets]. IEEE Geoscience and Remote Sensing Magazine, 8(4), pp.125-133.
@article{eradataset,
        title = {{ERA: A dataset and deep learning benchmark for event recognition in aerial videos}},
        author = {Mou, L. and Hua, Y. and Jin, P. and Zhu, X. X.},
        journal = {IEEE Geoscience and Remote Sensing Magazine},
        year = {in press}
}
 
 
 
└───ISBDA
https://drive.google.com/file/d/1kEKJ8kr1aScXz_1El7Mn-Yi0ANducQIW/view
Zhu, X., Liang, J. and Hauptmann, A., 2021. Msnet: A multilevel instance segmentation network for natural disaster damage assessment in aerial videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2023-2032).
@misc{zhu2020msnet,
    title={MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos},
    author={Xiaoyu Zhu and Junwei Liang and Alexander Hauptmann},
    year={2020},
    eprint={2006.16479},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
 
 
└───Floods 2013
https://github.com/cvjena/eu-flood-dataset
Barz, B., Schröter, K., Münch, M., Yang, B., Unger, A., Dransch, D. and Denzler, J., 2019. Enhancing flood impact analysis using interactive retrieval of social media images. arXiv preprint arXiv:1908.03361.
@article{barz2019enhancing,
  title={Enhancing flood impact analysis using interactive retrieval of social media images},
  author={Barz, Bj{\"o}rn and Schr{\"o}ter, Kai and M{\"u}nch, Moritz and Yang, Bin and Unger, Andrea and Dransch, Doris and Denzler, Joachim},
  journal={arXiv preprint arXiv:1908.03361},
  year={2019}
}
 
└───Wildfire Research
http://wildfire.fesb.hr/index.php?option=com_content&view=article&id=58&Itemid=54
 
 
└───PyImages
https://drive.google.com/file/d/1NvTyhUsrFbL91E10EPm38IjoCg6E2c6q/view
The dataset was curated by PyImageSearch reader, Gautam Kumar.
 
 
 
 
YOUTUBE VIDEOS
 
└───Collapsed Buildings/Earthquakes
• https://www.youtube.com/watch?v=TMow3WPcZrQ&t=133s&ab_channel=GORKHALYFOUNDATION
• https://www.youtube.com/watch?v=_HT0tYKKjBI&t=47s&ab_channel=Effect.org
• https://www.youtube.com/watch?v=rkb3y6K3waU
• https://www.youtube.com/watch?v=yir6ArRZY4o&t=109s&ab_channel=UnicefUK
• https://www.youtube.com/watch?v=CM9APmIR9Fk&ab_channel=ToonsZilla
• https://www.youtube.com/watch?v=tmx2w6drAeU&ab_channel=AssociatedPress
• https://www.youtube.com/watch?v=kuSEe8Emwrk&ab_channel=BloombergQuicktake%3ANow
• https://www.youtube.com/watch?v=qoFHA3-m5ag&ab_channel=NBCNews
• https://www.youtube.com/watch?v=MM3PToqEPhQ&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=zB_-TRnGuZE&ab_channel=DISASTERNEWS
• https://www.youtube.com/watch?v=TqAMQQOEsBs&ab_channel=WHAS11
• https://www.youtube.com/watch?v=0ixjTt-jmok&ab_channel=EveningStandard
• https://www.youtube.com/watch?v=bNGA8Ms3d70&ab_channel=CatersClips
• https://www.youtube.com/watch?v=wJ-2d5t23Lg&ab_channel=DailyDose
• https://www.youtube.com/watch?v=ewUcI7I6Gf4&ab_channel=NBCNews
• https://www.youtube.com/watch?v=Wx1cjOdlMZ4&ab_channel=ABCNews%28Australia%29
• https://www.youtube.com/watch?v=jiMK_sVmbXk&t=12s&ab_channel=NewChinaTV  
• https://www.youtube.com/watch?v=M9au_9A2YRo&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=i6Lh8IXPjso&ab_channel=TheSun
• https://www.youtube.com/watch?v=CKwxEr3I4Y8&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=hxqzcajBCNg&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=3&ab_channel=WXChasing
• https://www.youtube.com/watch?v=2GEeTDuf9mI&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=6&ab_channel=WXChasing
• https://www.youtube.com/watch?v=bDOuZWxIyNQ&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=9&ab_channel=WXChasing
• https://www.youtube.com/watch?v=vzoSADijLCQ&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=15&ab_channel=WXChasing
• https://www.youtube.com/watch?v=ZaL1fldTEAk&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=17&ab_channel=WXChasing
• https://www.youtube.com/watch?v=QSV81FdilZE&ab_channel=GlobalNews
• https://www.youtube.com/watch?v=KgOk9otW1Bg&ab_channel=EricFeijten
 
 
 
└───Floods
• https://www.youtube.com/watch?v=DJqgv8Sa5bA&t=317s&ab_channel=7NEWSAustralia
• https://www.youtube.com/watch?v=w5FintiCLJU&t=9s&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=HjMymNN6Ajc&t=143s&ab_channel=BioLogicTreeServices
• https://www.youtube.com/watch?v=Tmba18C94C8&ab_channel=AL.com
• https://www.youtube.com/watch?v=Dqvpv4Vg4lk&t=63s&ab_channel=ElevenEleven
• https://www.youtube.com/watch?v=N7QGicNtN2A&ab_channel=PKSVideoProductions
• https://www.youtube.com/watch?v=8CHagyQG16Q&ab_channel=Stolly-Sven
• https://www.youtube.com/watch?v=vjH3zFqdzcE&ab_channel=BenChilders
• https://www.youtube.com/watch?v=GFw89UB4fE8&ab_channel=BenChilders
• https://www.youtube.com/watch?v=heP3LEJ_NkE&ab_channel=7NEWSAustralia
 
 
 
└───Fires
• https://www.youtube.com/watch?v=gbM_NPx2GPc&t=201s&ab_channel=WXChasing
• https://www.youtube.com/watch?v=M97sJdyeEM4&t=72s&ab_channel=Sanuck176
• https://www.youtube.com/watch?v=1Z2K6lDt76M&t=557s&ab_channel=TheRelaxationChannel
 
└───Normal
• https://www.youtube.com/watch?v=SyxjsuNHWhM&t=328s&ab_channel=OneManWolfPack
• https://www.youtube.com/watch?v=f1PTWsBtrtc&ab_channel=ChernobylPug
 
 
 
 
 

Files

Test.zip

Files (1.5 GB)

Name Size Download all
md5:30d338e94dd0fbcc55ca67315981a900
148.4 MB Preview Download
md5:25d0357a1d3c378fbbeb1a9c543d5a45
1.2 GB Preview Download
md5:8fb4daca73b8ffb9c745a4dea721d08f
149.4 MB Preview Download

Additional details

Funding

KIOS CoE – KIOS Research and Innovation Centre of Excellence 739551
European Commission
COLLARIS 101101704
European Union