Published March 28, 2024
| Version v1
Dataset
Open
AIDERv2 (Aerial Image Dataset for Emergency Response Applications)
Description
SUMMARY OF DATASET
• This dataset consist of 167723 aerial images divided into 4 classes.
• The dataset contains three commonly occurring natural disasters
earthquake/collapsed buildings, flood, wildfire/fire, and a normal class; do not reflect any disaster
• The images can be loaded as numpy arrays using Python programming language and then used to train a Convolutional Neural Network to detect natural disasters from aerial images.
• The images are resized to 224x224x3 (heighty,width,channel number) when loaded as numpy arrays.
• The dataset is an extension of the AIDER dataset (Aerial Image Dataset for Emergency Response Applications).
• Additional images were collected by open source databases and extracted images as frames of videos downloaded from YouTube.
The table below shows the number of images in each set.
Train Validation Test Total
Earthquakes 1927 239 239 2405
Floods 4063 505 502 5070
Fire 3509 439 436 4384
Normal 3900 487 477 4864
Total 13399 1670 1654 16723
If you use this dataset please cite the following publications:
[1] Shianios, D., Kyrkou, C., Kolios, P.S. (2023). A Benchmark and Investigation of Deep-Learning-Based Techniques for Detecting Natural Disasters in Aerial Images. In: Tsapatsoulis, N., et al. Computer Analysis of Images and Patterns. CAIP 2023. Lecture Notes in Computer Science, vol 14185. Springer, Cham. https://doi.org/10.1007/978-3-031-44240-7_24
Link: https://link.springer.com/chapter/10.1007/978-3-031-44240-7_24
[2] D. Shianios, P. Kolios, C. Kyrkou, "DiRecNetV2: A Transformer-Enhanced Network for Aerial Disaster Recognition", SN Computer Science, 2024 (Accepted to Appear)
DATASET FOLDERS FORMAT
└───data
│ │
│ └───Dataset_Images
│ │ └───Train
│ │ │ | └───Earthquake
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Flood
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Normal
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Wildfire
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ └───Val
│ │ │ | └───Earthquake
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Flood
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Normal
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Wildfire
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ └───Test
│ │ │ | └───Earthquake
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Flood
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Normal
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
│ │ │ | └───Wildfire
│ │ │ | img (1).jpg
│ │ │ | img (2).jpg
│ │ │ | .....
DATA SOURCES AND DATA COLLECTION
OPEN SOURCE DATABASES
└───AIDER
https://zenodo.org/record/3888300#.Yuu11nZBxD-
Kyrkou, C. and Theocharides, T., 2020. EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp.1687-1699.
└───ERA
https://lcmou.github.io/ERA_Dataset/
Mou, L., Hua, Y., Jin, P. and Zhu, X.X., 2020. Era: A data set and deep learning benchmark for event recognition in aerial videos [software and data sets]. IEEE Geoscience and Remote Sensing Magazine, 8(4), pp.125-133.
@article{eradataset,
title = {{ERA: A dataset and deep learning benchmark for event recognition in aerial videos}},
author = {Mou, L. and Hua, Y. and Jin, P. and Zhu, X. X.},
journal = {IEEE Geoscience and Remote Sensing Magazine},
year = {in press}
}
└───ISBDA
https://drive.google.com/file/d/1kEKJ8kr1aScXz_1El7Mn-Yi0ANducQIW/view
Zhu, X., Liang, J. and Hauptmann, A., 2021. Msnet: A multilevel instance segmentation network for natural disaster damage assessment in aerial videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 2023-2032).
@misc{zhu2020msnet,
title={MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos},
author={Xiaoyu Zhu and Junwei Liang and Alexander Hauptmann},
year={2020},
eprint={2006.16479},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
└───Floods 2013
https://github.com/cvjena/eu-flood-dataset
Barz, B., Schröter, K., Münch, M., Yang, B., Unger, A., Dransch, D. and Denzler, J., 2019. Enhancing flood impact analysis using interactive retrieval of social media images. arXiv preprint arXiv:1908.03361.
@article{barz2019enhancing,
title={Enhancing flood impact analysis using interactive retrieval of social media images},
author={Barz, Bj{\"o}rn and Schr{\"o}ter, Kai and M{\"u}nch, Moritz and Yang, Bin and Unger, Andrea and Dransch, Doris and Denzler, Joachim},
journal={arXiv preprint arXiv:1908.03361},
year={2019}
}
└───Wildfire Research
http://wildfire.fesb.hr/index.php?option=com_content&view=article&id=58&Itemid=54
└───PyImages
https://drive.google.com/file/d/1NvTyhUsrFbL91E10EPm38IjoCg6E2c6q/view
The dataset was curated by PyImageSearch reader, Gautam Kumar.
YOUTUBE VIDEOS
└───Collapsed Buildings/Earthquakes
• https://www.youtube.com/watch?v=TMow3WPcZrQ&t=133s&ab_channel=GORKHALYFOUNDATION
• https://www.youtube.com/watch?v=_HT0tYKKjBI&t=47s&ab_channel=Effect.org
• https://www.youtube.com/watch?v=rkb3y6K3waU
• https://www.youtube.com/watch?v=yir6ArRZY4o&t=109s&ab_channel=UnicefUK
• https://www.youtube.com/watch?v=CM9APmIR9Fk&ab_channel=ToonsZilla
• https://www.youtube.com/watch?v=tmx2w6drAeU&ab_channel=AssociatedPress
• https://www.youtube.com/watch?v=kuSEe8Emwrk&ab_channel=BloombergQuicktake%3ANow
• https://www.youtube.com/watch?v=qoFHA3-m5ag&ab_channel=NBCNews
• https://www.youtube.com/watch?v=MM3PToqEPhQ&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=zB_-TRnGuZE&ab_channel=DISASTERNEWS
• https://www.youtube.com/watch?v=TqAMQQOEsBs&ab_channel=WHAS11
• https://www.youtube.com/watch?v=0ixjTt-jmok&ab_channel=EveningStandard
• https://www.youtube.com/watch?v=bNGA8Ms3d70&ab_channel=CatersClips
• https://www.youtube.com/watch?v=wJ-2d5t23Lg&ab_channel=DailyDose
• https://www.youtube.com/watch?v=ewUcI7I6Gf4&ab_channel=NBCNews
• https://www.youtube.com/watch?v=Wx1cjOdlMZ4&ab_channel=ABCNews%28Australia%29
• https://www.youtube.com/watch?v=jiMK_sVmbXk&t=12s&ab_channel=NewChinaTV
• https://www.youtube.com/watch?v=M9au_9A2YRo&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=i6Lh8IXPjso&ab_channel=TheSun
• https://www.youtube.com/watch?v=CKwxEr3I4Y8&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=hxqzcajBCNg&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=3&ab_channel=WXChasing
• https://www.youtube.com/watch?v=2GEeTDuf9mI&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=6&ab_channel=WXChasing
• https://www.youtube.com/watch?v=bDOuZWxIyNQ&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=9&ab_channel=WXChasing
• https://www.youtube.com/watch?v=vzoSADijLCQ&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=15&ab_channel=WXChasing
• https://www.youtube.com/watch?v=ZaL1fldTEAk&list=RDCMUCD3KREyo3IqCLBC-4khGgIw&index=17&ab_channel=WXChasing
• https://www.youtube.com/watch?v=QSV81FdilZE&ab_channel=GlobalNews
• https://www.youtube.com/watch?v=KgOk9otW1Bg&ab_channel=EricFeijten
└───Floods
• https://www.youtube.com/watch?v=DJqgv8Sa5bA&t=317s&ab_channel=7NEWSAustralia
• https://www.youtube.com/watch?v=w5FintiCLJU&t=9s&ab_channel=GuardianNews
• https://www.youtube.com/watch?v=HjMymNN6Ajc&t=143s&ab_channel=BioLogicTreeServices
• https://www.youtube.com/watch?v=Tmba18C94C8&ab_channel=AL.com
• https://www.youtube.com/watch?v=Dqvpv4Vg4lk&t=63s&ab_channel=ElevenEleven
• https://www.youtube.com/watch?v=N7QGicNtN2A&ab_channel=PKSVideoProductions
• https://www.youtube.com/watch?v=8CHagyQG16Q&ab_channel=Stolly-Sven
• https://www.youtube.com/watch?v=vjH3zFqdzcE&ab_channel=BenChilders
• https://www.youtube.com/watch?v=GFw89UB4fE8&ab_channel=BenChilders
• https://www.youtube.com/watch?v=heP3LEJ_NkE&ab_channel=7NEWSAustralia
└───Fires
• https://www.youtube.com/watch?v=gbM_NPx2GPc&t=201s&ab_channel=WXChasing
• https://www.youtube.com/watch?v=M97sJdyeEM4&t=72s&ab_channel=Sanuck176
• https://www.youtube.com/watch?v=1Z2K6lDt76M&t=557s&ab_channel=TheRelaxationChannel
└───Normal
• https://www.youtube.com/watch?v=SyxjsuNHWhM&t=328s&ab_channel=OneManWolfPack
• https://www.youtube.com/watch?v=f1PTWsBtrtc&ab_channel=ChernobylPug