Process modeling, environmental and economic sustainability of the valorization of whey and eucalyptus residues for resveratrol biosynthesis
Description
Biomass is one of the renewable resources with the greatest potential, not only because of the possibility of energy recovery but also because of its content in components of interest. In this context, the regions of Galicia and Portugal have large areas of land dedicated to forestry, agriculture and livestock, and the large amount of waste generated represents a cost for the producer. The importance of these facts has aroused great interest in society to focus its interest on improving the current situation while seeking a benefit, both environmental and economic, from existing resources. That is why the integration of biotechnological processes and biorefinery for their valorization are considered key aspects in the way of producing bioproducts and bioenergy. This research article proposes a process for producing resveratrol from whey from the dairy industry and eucalyptus residues from forestry exploitation. In order to evaluate its suitability, a techno-economic analysis and an environmental assessment have been carried out using the Life Cycle Assessment (LCA) methodology.
The results obtained show the potential of these scenarios both from the economic point of view, by obtaining a minimum sale price of resveratrol to ensure the viability of the process below the market average, and from the environmental point of view, being eucalyptus residues those that result in a lower contribution to the environment per unit of resveratrol produced. Future research should focus on increasing the throughput of the production process to increase its profitability and on reducing energy requirements throughout the process, as these have been the main critical points identified. In addition, following the sensitivity assessment, it has been concluded that opting for renewable energy is the most sustainable option.
Files
1-s2.0-S0956053X23006414-main.pdf
Files
(1.4 MB)
Name | Size | Download all |
---|---|---|
md5:949fa9340c9252d3fa8feb570134e537
|
1.4 MB | Preview Download |
Additional details
Dates
- Accepted
-
2023-12-01Article