There is a newer version of the record available.

Published December 19, 2023 | Version 0.1.0
Model Open

StarDist Model for Nuclei Segmentation in Synthetic Lifeact-RFP Images

  • 1. Universidad Carlos III de Madrid Escuela Politécnica Superior

Description

The StarDist model is specialized in performing nuclei segmentation on synthetic Lifeact-RFP images, which were initially generated from sir-DNA images using the Pix2Pix model. This model is an integral part of a pipeline that begins with image generation via Pix2Pix, followed by nuclei segmentation using StarDist.

StarDist has been fine-tuned using the ZeroCostDL4Mic notebook, with a specific training dataset sourced from Zenodo.

- Fine-Tuning Notebook:StarDist Notebook
- Training Dataset: Zenodo Dataset

Files

cover.png

Files (406.0 MB)

Name Size Download all
md5:094036695293f2d7b97d9931efe7b7f7
10.4 kB Preview Download
md5:7f817d628731229bc80b470816248ced
1.5 kB Preview Download
md5:e3ab4eecbfc14af46b6b1f3bcd756356
179 Bytes Download
md5:f8021eaf3dcf30825a61286c0802bbaa
4.4 kB Download
md5:8b1a727f6d808bf6e357f2cb51e03774
3.9 kB Download
md5:0f3d4b4dc9e7b3c9531d4ce0558b23cc
4.2 MB Preview Download
md5:e7fd3f275fed41e744a65f8d2d37d6bf
138.4 MB Preview Download
md5:8b44368660d470da7b2baae8ee73b733
109.4 MB Preview Download
md5:da0f6891ba554aead57f7948bb7af0d3
167.5 kB Preview Download
md5:997e5139ce4604d3bd5416ef294807e5
89.1 kB Preview Download
md5:5f76841570c45646c74247f85caa5dc1
1.8 kB Download
md5:e59cf447d233c8076a1757aac32bd486
5.8 MB Download
md5:a31a5ab5f794281acffaaff79961d515
4.2 MB Download
md5:dd715782c332ddda92df4c28861fe797
138.4 MB Download
md5:1405b02490d7a342efca28982f807f59
5.3 MB Preview Download

Additional details

References

  • Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11 (pp. 265-273). Springer International Publishing.
  • von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E., ... & Henriques, R. (2021). Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature communications, 12(1), 2276.