Ab initio study of magneto-ionic mechanisms in ferromagnet/oxide multilayers
Creators
- 1. Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy and Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- 2. Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
- 3. Physics Department, International Center of Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China and Consiglio Nazionale delle Ricerche (CNR-SPIN), Unità di Ricerca presso Terzi c/o Università "G. D'Annunzio," 66100 Chieti, Italy
- 4. Spin-Ion Technologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France and Université Paris-Saclay, 3 rue Juliot Curie, 91190 Gif-sur-Yvette, France
- 5. Consiglio Nazionale delle Ricerche (CNR-SPIN), Unità di Ricerca presso Terzi c/o Università "G. D'Annunzio," 66100 Chieti, Italy
- 6. Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France and Spin-Ion Technologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
- 7. Physics Department, International Center of Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
- 8. Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
Description
The application of gate voltages in heavy metal/ferromagnet/oxide multilayer stacks has been identified as one possible candidate to manipulate their anisotropy at will. However, this method has proven to show a wide variety of behaviors in terms of reversibility, depending on the nature of the metal/oxide interface and its degree of oxidation. In order to shed light on the microscopic mechanism governing the complex magneto-ionic behavior in Ta/CoFeB/HfO2, we perform ab initio simulations on various setups comprising Fe/O and Fe/HfO2 interfaces with different oxygen atom interfacial geometries. After the determination of the more stable interfacial configurations, we calculate the magnetocrystalline anisotropy energy on the different unit cell configurations and formulate a possible mechanism that well describes the recent experimental observations in Ta/CoFeB/HfO2.
Files
PhysRev_di_Pietro_2023.pdf
Files
(1.8 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:e3f59896d2404ab4900b9d280e2ab384
|
1.8 MB | Preview Download |