Published March 23, 2023 | Version v1
Book Open

Modern methods of diagnosing disaeses

  • 1. Kharkiv National Medical University
  • 2. State Institution «Іnstitute of Traumatology and Orthopedics of the National Academy of Medical Science of Ukraine»
  • 3. Institute of Thermoelectricity of National Academy of Sciences and Ministry of Education and Science of Ukraine
  • 4. Cherkasy National University Named after Bohdan Khmelnyskyi
  • 5. Bogomolets National Medical University
  • 6. Dnipro State Medical University

Description

Collective monograph contains the results of scientific research devoted to new views and proposals for the diagnosis of certain diseases. The proposed solutions are important for clinical practice and inspire optimism in obtaining encouraging results in overcoming some pathologies.

Chapter 1 is dedicated to endoscopic retrograde cholangiopancreatography - a contrast study of the bile ducts and ductal system of the pancreas, which is achieved by their cannulation with the help of a flexible endoscope and their visualization by X-ray (fluoroscopy). Thanks to this, it becomes possible to diagnose and perform medical interventions for choledocholithiasis, benign and malignant obstruction of the bile ducts, chronic pancreatitis accompanied by obstruction of the pancreatic ducts.

Chapter 2 presents the results of the development of a thermoelectric device for diagnosing inflammatory processes and pain syndrome in degenerative-dystrophic diseases of the lumbosacral spine. Such a device makes it possible to save, process and visualize measurement results on the display of the device and on a personal computer in real time. The results of clinical studies of thermometric indicators in the lumbosacral region of the spine in persons with chronic pain syndrome against the background of degenerative-dystrophic pathology of the spine in the presence of hernias and protrusions of intervertebral discs are given. The effectiveness of the proposed thermoelectric device in medical practice has been confirmed.

Chapter 3 presents the results of the examination of various contingents of the population: students, athletes, mobile operators, people with hearing loss, post-covid syndrome and psychophysiological lability developed under martial law. The features of information processing by examinees with different degrees of functional mobility of nervous processes are highlighted. It was found that the deprivation of auditory function, post-conviction syndrome, psychophysiological lability developed in the conditions of martial law significantly reduce the level of neural processes and the ability to process information.
The evaluation scales of neurodynamic and sensorimotor functions proposed for use in the medical field can be used to optimize diagnosis and increase the effectiveness of monitoring neurological morbidity, including in people with special needs.

Chapter 4 is devoted to the problems of children's neuropsychiatric diseases, in particular brain damage in children with ASD. Restrained optimism is expressed for the prospect of overcoming this severe psychiatric pathology in the foreseeable future due to the introduction of genetic, biochemical and immunodiagnostic approaches, as well as metabolic and immunotherapeutic interventions with neuroprotective effects. Arguments are presented in favor of the fact that the successful testing in clinical practice of evidence-based personalized multidisciplinary strategies of diagnosis and treatment will allow a breakthrough in the clinical management of children with severe mental disorders in the near future. This will provide not only the possibility of recovery from a prognostically unfavorable and currently incurable neuropsychiatric disorder, but will also contribute to stopping the large-scale threatening epidemic of neuropsychiatric syndromes in the modern child population.

Chapter 5 presents the evolution of views on the problem of Internet addiction, provides information on its prevalence, comorbidity with mental disorders, and provides an overview of modern clinical classifications and psychometric tools for its diagnosis. A single definition of "cyber addiction" is singled out, based on the fact that the object of addiction is interaction with various information resources and technical means.
The proposed clinical diagnostic criteria, which are based on the criteria for the diagnosis of mental and behavioral disorders due to the use of psychoactive substances ICD-11, and the characteristics of the boundary with normative behavior when using various information resources and technical means are provided. The development and validation of a new psychodiagnostic screening tool based on the proposed cyber addiction paradigm, the YSCAS scale, is presented.

The monograph is intended for doctors and practitioners who are engaged in the search and implementation of effective diagnostic methods to overcome the problems associated with the detection and treatment of certain pathologies. The monograph can also be useful to postgraduate and master's students of universities in the relevant educational and scientific profile.

Files

978-617-7319-65-7.pdf

Files (9.7 MB)

Name Size Download all
md5:b0dd44baf31a73f899a080367ee656be
9.7 MB Preview Download

Additional details

References

  • McCune, W. S., Shorb, P. E., Moscovitz, H. (1968). Endoscopic Cannulation of the Ampulla of Vater. Annals of Surgery, 167 (5), 752–756. doi: https://doi.org/10.1097/00000658­196805000­00013
  • Cotton, P., Leung, J. (2006). Advanced Digestive Endoscopy: ERCP. Malden: Blackwell Publishing.
  • Kawai, K., Akasaka, Y., Murakami, K., Tada, M., Kohli, Y., Nakajima, M. (1974). Endoscopic sphincterotomy of the ampulla of Vater. Gastrointestinal Endoscopy, 20 (4), 148–151. doi: https://doi.org/10.1016/s0016­5107(74)73914­1
  • Classen, M., Demling, L. (1974). Endoskopische Sphinkterotomie der Papilla Vateri und Steinextraktion aus dem Ductus choledochus. DMW – Deutsche Medizinische Wochenschrift, 99 (11), 496–497. doi: https://doi.org/10.1055/s­0028­1107790
  • Soehendra, N., Reynders­Frederix, V. (1980). Palliative Bile Duct Drainage – A New Endoscopic Method of Introducing a Transpapillary Drain. Endoscopy, 12 (1), 8–11. doi: https://doi.org/10.1055/s­2007­1021702
  • Lammer, J., Lepuschütz, H., Sager, W. D., Kratochvil, P., Brandstätter, G., Zalaudek, G. (1980). ERCP und CT in der Diagnostik von chronischer Pankreatitis, Pseudozysten und Pankreaskarzinom – ein Vergleich. Rontgenblatter, 33 (12), 602–611.
  • Shimizu, S., Yokohata, K., Mizumoto, K., Yamaguchi, K., Chijiiwa, K., Tanaka, M. (2002). Laparoscopic choledochotomy for bile duct stones. Journal of Hepato­Biliary­Pancreatic Surgery, 9 (2), 201–205. doi: https://doi.org/10.1007/s005340200019
  • Baron, T. H., Kozarek, R., Carr­Locke, D. L. (2008). ERCP. W. B. Saunders, 493–505. doi: https://doi.org/10.1016/B978­1­4160­4271­6.50051­4
  • Yuen, N., O'Shaughnessy, P., Thomson, A. (2017). New classification system for indications for endoscopic retrograde cholangiopancreatography predicts diagnoses and adverse events. Scandinavian Journal of Gastroenterology, 52 (12), 1457–1465. doi: https://doi.org/10.1080/00365521.2017.1384053
  • Shah, S. L., Carr­Locke, D. (2020). ERCP for acute cholangitis: timing is everything. Gastrointestinal Endoscopy, 91 (4), 761–762. doi: https://doi.org/10.1016/j.gie.2019.12.010
  • Mamontov, I. N. (2019). Shkala opredeleniia pokazanii k ERKhPG i endoskopicheskim vmeshatelstvam u bolnykh s obstruktciei vnepechenochnykh zhelchnykh putei. Kharkіvska khіrurgіchna shkola, 3­4 (96­97), 108–113.
  • Talukdar, R. (2016). Complications of ERCP. Best Practice & Research Clinical Gastroenterology, 30 (5), 793–805. doi: https://doi.org/10.1016/j.bpg.2016.10.007
  • Johnson, K. D., Perisetti, A., Tharian, B., Thandassery, R., Jamidar, P., Goyal, H., Inamdar, S. (2019). Endoscopic Retrograde Cholangiopancreatography­Related Complications and Their Management Strategies: A "Scoping" Literature Review. Digestive Diseases and Sciences, 65 (2), 361–375. doi: https://doi.org/10.1007/s10620­019­05970­3
  • Ak, Ç., Aykut, H., Pala, E., Sayar, S., Tarikçi Kiliç, E., Adali, G. et al. (2022). Post­ERCP Complication Analysis of an Experienced Center. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 32 (6), 707–713. doi: https://doi.org/10.1097/sle.0000000000001113
  • Tryliskyy, Y., Bryce, G. (2018). Post­ERCP pancreatitis: Pathophysiology, early identification and risk stratification. Advances in Clinical and Experimental Medicine, 27 (1), 149–154. doi: https://doi.org/10.17219/acem/66773
  • Mine, T., Morizane, T., Kawaguchi, Y., Akashi, R., Hanada, K., Ito, T. et al. (2017). Clinical practice guideline for post­ERCP pancreatitis. Journal of Gastroenterology, 52 (9), 1013–1022. doi: https://doi.org/10.1007/s00535­017­1359­5
  • Cahyadi, O., Tehami, N., de­Madaria, E., Siau, K. (2022). Post­ERCP Pancreatitis: Prevention, Diagnosis and Management. Medicina, 58 (9), 1261. doi: https://doi.org/10.3390/medicina58091261
  • Shen, C., Shi, Y., Liang, T., Su, P. (2017). Rectal NSAIDs in the prevention of post­endoscopic retrograde cholangiopancreatography pancreatitis in unselected patients: Systematic review and meta­analysis. Digestive Endoscopy, 29 (3), 281–290. doi: https://doi.org/10.1111/den.12816
  • Bae, S. S., Lee, D. W., Han, J., Kim, H. G. (2019). Risk factor of bleeding after endoscopic sphincterotomy in average risk patients. Surgical Endoscopy, 33 (10), 3334–3340. doi: https://doi.org/10.1007/s00464­018­06623­8
  • Yilmaz, H., Koçyiğit, B. (2022). Predictors of postendoscopic retrograde cholangiopancreatography associated cholangitis: a retrospective cohort study. Turkish Journal of Medical Sciences, 52 (1), 105–112. doi: https://doi.org/10.3906/sag­2109­84
  • Chen, M., Wang, L., Wang, Y., Wei, W., Yao, Y.­L., Ling, T.­S., Shen, Y.­H., Zou, X.­P. (2018). Risk factor analysis of post­ERCP cholangitis: A single­center experience. Hepatobiliary & Pancreatic Diseases International, 17 (1), 55–58. doi: https://doi.org/10.1016/j.hbpd.2018.01.002
  • Boonsinsukh, T., Viriyaroj, V., Yodying, H. (2016). Risk Factors for Post Endoscopic Retrograde Cholangiopancreatography Cholangitis. Journal of the Medical Association of Thailand, 8, S166–S170.
  • Cao, J., Peng, C., Ding, X., Shen, Y., Wu, H., Zheng, R., Wang, L., Zou, X. (2018). Risk factors for post­ERCP cholecystitis: a single­center retrospective study. BMC Gastroenterology, 18 (1). doi: https://doi.org/10.1186/s12876­018­0854­3
  • Ting, P.­H., Luo, J.­C., Lee, K.­C., Chen, T.­S., Huang, Y.­H., Hou, M.­C., Lee, F.­Y. (2020). Post endoscopic retrograde cholangiopancreatography cholecystitis: The incidence and risk factors analysis. Journal of the Chinese Medical Association, 83 (8), 733–736. doi: https://doi.org/10.1097/jcma.0000000000000383
  • Manes, G., Paspatis, G., Aabakken, L., Anderloni, A., Arvanitakis, M., Ah­Soune, P. et al. (2019). Endoscopic management of common bile duct stones: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy, 51 (5), 472–491. doi: https://doi.org/10.1055/a­0862­0346
  • Trikudanathan, G., Navaneethan, U., Parsi, M. A. (2013). Endoscopic management of difficult common bile duct stones. World Journal of Gastroenterology, 19 (2), 165–173. doi: https://doi.org/10.3748/wjg.v19.i2.165
  • Cianci, P., Restini, E. (2021). Management of cholelithiasis with choledocholithiasis: Endoscopic and surgical approaches. World Journal of Gastroenterology, 27 (28), 4536–4554. doi: https://doi.org/10.3748/wjg.v27.i28.4536
  • Mamontov, Y. N. (2016). Rezultati lechenyia bolnikh po povodu syndroma Mirizzi. Klinichna khirurhiia, 9 (890), 25–27.
  • Mirizzi, P. L. (1948). Sndrome del conducto heptico. J. Int. Chir., 8, 731–777.
  • McSherry, C. K., Ferstenberg, H., Virshup, M. (1982). The Mirizzi syndrome: Suggested classification and surgical treatment. Surg Gastroenterol, 1, 219–225.
  • Beltran, M. A., Csendes, A., Cruces, K. S. (2008). The Relationship of Mirizzi Syndrome and Cholecystoenteric Fistula: Validation of a Modified Classification. World Journal of Surgery, 32 (10), 2237–2243. doi: https://doi.org/10.1007/s00268­008­9660­3
  • Aadam, A. A., Liu, K. (2019). Endoscopic palliation of biliary obstruction. Journal of Surgical Oncology, 120 (1), 57–64. doi: https://doi.org/10.1002/jso.25483
  • van der Gaag, N. A., Rauws, E. A. J., van Eijck, C. H. J., Bruno, M. J., van der Harst, E., Kubben, F. J. G. M. et al. (2010). Preoperative Biliary Drainage for Cancer of the Head of the Pancreas. New England Journal of Medicine, 362 (2), 129–137. doi: https://doi.org/10.1056/nejmoa0903230
  • Tamura, T., Itonaga, M., Ashida, R., Yamashita, Y., Hatamaru, K., Kawaji, Y. et al. (2021). Covered self-expandable metal stents versus plastic stents for preoperative biliary drainage in patient receiving neo­adjuvant chemotherapy for borderline resectable pancreatic cancer: Prospective randomized study. Digestive Endoscopy, 33 (7), 1170–1178. doi: https://doi.org/10.1111/den.13926
  • Riff, B. P., Chandrasekhara, V. (2016). The Role of Endoscopic Retrograde Cholangiopancreatography in Management of Pancreatic Diseases. Gastroenterology Clinics of North America, 45 (1), 45–65. doi: https://doi.org/10.1016/j.gtc.2015.10.009
  • Rio­Tinto, R., Canena, J. (2020). Endoscopic Treatment of Post­Cholecystectomy Biliary Leaks. GE – Portuguese Journal of Gastroenterology, 28 (4), 265–273. doi: https://doi.org/10.1159/000511527
  • Gawlik, C., Carneval, M. (2021). A Review of the Management of Bile Leaks. Cureus, 13 (5), e14937. doi: https://doi.org/10.7759/cureus.14937
  • Yuryk, O. Ye.; Krynsky, A., Galovidin, A., Rudnicki, M. (Eds.) (2022). Features of some neurological disordes by degenerative­dystrophic pathology of the spine. Polonia University in Czenstochova. Modern science and education in Ukraine and EU countriesi gimperatives, transformation, development vectores. Riga: Baltia Publishing, 246–263. doi: https://doi.org/10.30525/978­9934­26­240­1­13
  • Yuryk, O. Ye. (2001). Nevrolohichni proiavy osteokhondrozu: patohenez, klinika, likuvannia. Kyiv: Zdorovia, 344.
  • Murashko, N. K., Morozova, O. H.; Murashko, N. K. (Ed.) (2013). Refleksoterapiia. Vol. 2. Kyiv: Tov SYK Hrup Ukrayna, 421.
  • Sviridova, N. K., Sereda, V. H., Dovhyi, V. L., Popov, O. V., Shcherbatyi, A. A. (2018). Diagnosis of vertebrogenic pain syndromes. Skhidno­Ievropeiskyi nevrolohichnyi zhurnal, 1, 4–12.
  • Mixter, W. J., Barr, J. S. (1934). Rupture of the Intervertebral Disc with Involvement of the Spinal Canal. New England Journal of Medicine, 211 (5), 210–215. doi: https://doi.org/10.1056/nejm193408022110506
  • Macheret, Ye. L., Dovhyi, I. L., Korkushko, O. O. (2006). Osteokhondroz poperekovoho viddilu khrebta, uskladnenyi hryzhamy dyskiv. Vol. 1, 2. Kyiv.
  • Jensen, M. P., Dworkin, R. H., Gammaitoni, A. R., Olaleye, D. O., Oleka, N., Galer, B. S. (2005). Assessment of pain quality in chronic neuropathic and nociceptive pain clinical trials with the Neuropathic Pain Scale. The Journal of Pain, 6 (2), 98–106. doi: https://doi.org/10.1016/j.jpain.2004.11.002
  • Kovacs, F. M., Arana, E., Royuela, A., Estremera, A., Amengual, G., Asenjo, B. et al. (2012). Vertebral Endplate Changes Are Not Associated with Chronic Low Back Pain among Southern European Subjects: A Case Control Study. American Journal of Neuroradiology, 33 (8), 1519–1524. doi: https://doi.org/10.3174/ajnr.a3087
  • Foley, K. T., Smith, M. M. (1997). Microendoscopic Discectomy. Techniques in Neurosurgery, 3, 301–307.
  • Popelianskii, Ia. Iu. (1989). Bolezni perifericheskoi nervnoi sistemy. Moscow: Meditcina, 464.
  • Kalka, N. I. (2015). Profilaktyka i podolannia syndromu khronichnoi vtomy u pratsivnykiv OVS. Lviv: LvDUVS, 84.
  • Chupryna, H. M., Macheret, Ye. L., Kovalenko, O. Ye. (2007). Astenichni syndromy v strukturi nevrolohichnoi patolohii. Zbirnyk naukovykh prats spivrobitnykiv NMAPO im. P. L. Shupyka, 16 (4), 751–762.
  • Golovchenko, Iu. I. (1985). O diagnostike i klassifikatcii zabolevanii perifericheskogo otdela nervnoi sistemy. Vrachebnoe delo, 7, 98–102.
  • Iankovskii, G. A. (1982). Osteoretceptciia. Riga: Zinatne, 316.
  • Anatychuk, L. I. (1979). Termoelementy i termoelektricheskie ustroistva. Kyiv: Naukova dumka, 768.
  • Demchuk, B. M., Kushneryk, L. Ya., Rublenyk, I. M. (2002). Termoelektrychni datchyky dlia ortopedii. Termoelektryka, 4, 80–85.
  • Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A. (2014). Hraduiuvannia termoelektrychnykh sensoriv teplovoho potoku. Suchasni informatsiini ta elektronni tekhnolohii. Odesa, 30–31.
  • Kobylianskyi, R. R., Boichuk, V. V. (2015). Vykorystannia termoelektrychnykh teplomiriv u medychnii diahnostytsi. Naukovyi visnyk Chernivetskoho universytetu. Fizyka. Elektronika, 4 (1), 90–96.
  • Hyshchuk, V. S. (2013). Modernizovanyi prylad dlia vymiriuvannia teplovykh potokiv liudyny. Termoelektryka, 2, 91–95.
  • Anatychuk, L. I., Ivashchuk, O. I., Kobylianskyi, R. R., Postevka, I. D., Bodiaka, V. Yu., Hushul, I. Ya. (2016). Termoelektrychnyi prylad dlia vymiriuvannia temperatury i hustyny teplovoho potoku "ALTEK­10008". Termoelektryka, 1, 76–84.
  • Anatychuk, L. I., Yuryk, O. Ye., Kobylianskyi, R. R., Roi, I. V., Fishchenko, Ya. V., Slobodianiuk, N. P. et al. (2017). Termoelektrychnyi prylad dlia diahnostyky zapalnykh protsesiv ta nevrolohichnykh proiaviv osteokhondrozu khrebta liudyny. Termoelektryka, 3, 54–67.
  • Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A., Lysko, V. V., Puhantseva, O. V., Rozver, Yu. Yu., Tiumentsev, V. A. (2016). Stend dlia hraduiuvannia termoelektrychnykh peretvoriuvachiv teplovoho potoku. Termoelektryka, 5, 71–79.
  • Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A., Kuz, R. V., Manyk, O. M., Nitsovych, O. V., Cherkez, R. H. (2016). Tekhnolohiia vyhotovlennia termoelektrychnykh mikrobatarei. Termoelektryka, 6, 49–54.
  • Yuryk, O. Ye., Anatychuk, L. I., Roi, I. V., Kobylianskyi, R. R., Fishchenko, Ya. V., Slobodianiuk, N. P. et al. (2017). Osoblyvosti teplovoho obminu u patsiientiv z nevrolohichnymy proiavamy osteokhondrozu v poperekovo­kryzhovomu viddili khrebta. Travma, 18 (6).
  • Anatychuk, L. I., Luste, O. Ya., Kobylianskyi, R. R. (2017). Informatsiino­enerhetychna teoriia termoelektrychnykh sensoriv temperatury i teplovoho potoku medychnoho pryznachennia. Termoelektryka, 4, 5–20.
  • Anatychuk, L. I., Kobylianskyi, R. R., Cherkez, R. G., Konstantynovych, I. A., Hoshovskyi, V. I., Tiumentsev, V. A. (2017). Thermoelectric device with electronic control unit for diagnostics of inflammatory processes in the human organism. Tekhnologiia i konstruirovanie v elektronnoi apparature, 6, 44–48. doi: https://doi.org/10.15222/tkea2017.6.44
  • Anatychuk, L. I., Ivashchuk, O. I., Kobylianskyi, R. R., Postevka, I. D., Bodiaka, V. Yu., Hushul, I. Ya., Chuprovska, Yu. Ya. (2018). Pro vplyv temperatury navkolyshnoho seredovyshcha na pokazy termoelektrychnykh sensoriv medychnoho pryznachennia. Sensorna elektronika i mikrosystemni tekhnolohii, 15 (1), 17–29.
  • Anatychuk, L. I., Yuryk, O. Ye., Strafun, S. S., Stashkevych, A. T., Kobylianskyi, R. R., Chev'iuk, A. D. et al. (2021). Thermometric indicators in patients with chronic lower back pain. Termoelektryka, 1, 52–66.
  • Veselovskii, V. P. (1995). Prakticheskaia vertebronevrologiia i manualnaia terapiia. Riga, 394.
  • Andriuchenko, T., Vakulenko, O., Volkov, V., Dziuba, N., Koliada, V., Komarova, N. et al. (2019). Formuvannia zdorovoho sposobu zhyttia molodi. Navchalno­metodychni rekomendatsii. Kyiv: Blank­Pres, 120.
  • Markovych, I. F. (2016). Medychno­sotsiolohichne doslidzhennia faktoriv sposobu zhyttia, profesiinoi diialnosti ta osobystoho vidnoshennia do medychnoi dopomohy viiskovosluzhbovtsiv. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorov'ia Ukrainy, 4, 57–65.
  • Makarenko, M. V., Kyrylenko, L. P. (2015). Rol indyvidualno­typolohichnykh vlastyvostei vyshchoi nervovoi diialnosti liudyny v uspishnosti navchannia ta nadiinosti profesiinoi diialnosti. Fiziolohichnyi zhurnal, 3, 118–126.
  • Prashko, Ya., Mozhny, P., Shlepetsky, M. (2017). Kohnityvno­bikhevioralna terapiia psykhichnykh rozladiv. Praha, 1072.
  • Chagas, D. V., Batista, L. A. (2017). Comparison of Health Outcomes Among Children with Different Levels of Motor Competence. Human Movement, 18 (2), 56–61. doi: https://doi.org/10.1515/humo­2017­0018
  • Makarenko, M. V. (2006). Osnovy profesiinoho vidboru viiskovykh spetsialistiv ta metodyky vyvchennia indyvidualnykh psykhofiziolohichnykh vidminnostei mizh liudmy. Kyiv: In­t fiziolohii im. O.O. Bohomoltsia, 395.
  • Makarenko, M. V., Lyzohub, V. S., Halka, M. S., Yukhymenko, L. I., Khomenko, S. M. (2011). Pat. No. 96496 UA. Sposib psykhofiziolohichnoi otsinky funktsionalnoho stanu slukhovoho analizatora. MPK: A 61V5/16. No. a 2010 02225; declareted: 01.03.2010; published: 10.11.2011, Bul. No. 21.
  • Makarenko, M. V., Lyzohub, V. S., Yukhymenko, L. I., Khomenko, S. M. (2014). Pat. No. 106028 UA. Sposib vyznachennia shvydkosti tsentralnoi obrobky informatsii vyshchymy viddilamy nervovoi systemy. MPK: A 61V5/16. No. a 2013 12529; declareted: 25.10.2013; published: 10.07.2014, Bul. No. 13.
  • Myshchenko, T. S. (2017). Epidemiology of cerebrovascular diseases and organization of medical care for patients with stroke in Ukraine. Ukrainskyi visnyk psykhonevrolohii, 25 (1 (90)), 22–24.
  • Sekeon, S. A., Warouw, F., Mantjoro, E. (2020). Sleep quality and cognitive dysfunction among acute stroke patients from coastal areas of north sulawesi, indonesia. Journal of Clinical and Diagnostic Research, 14 (1), 6–8. doi: https://doi.org/10.7860/jcdr/2020/41322.13414
  • Lockwood, C. (2017). Cognitive rehabilitation for memory deficits after stroke: A Cochrane review summary. International Journal of Nursing Studies, 76, 131–132. doi: https://doi.org/10.1016/j.ijnurstu.2017.02.011
  • Kokun, O. M., Pishko, I. O., Lozinska, N. S., Kopanytsia, O. V., Malkhazov, O. R. (2011). Zbirnyk metodyk dlia diahnostyky psykholohichnoi hotovnosti viiskovosluzhbovtsiv viiskovoi sluzhby za kontraktom do diialnosti u skladi myrotvorchykh pidrozdiliv. Kyiv: NDTs HP ZSU, 281.
  • Yukhymenko, L. I. (2022). Manifestations of the post­COVID Syndrome in the functional Characteristics of the human brain. The role of medical science in implementing innovative medical technologies in the eu countries and Ukraine, 264–277. doi: https://doi.org/10.30525/978­9934­26­240­1­14
  • Yukhimenko, L. (2016). Eletroencephalographic correlates of the speed (time) of the central processing of information by the higher parts of brain in humans with the different individual­typological features of the higher nervous activity. EUREKA: Life Sciences, 2, 51–56. doi: https://doi.org/10.21303/2504­5695.2016.00068
  • Yukhymenko, L. I., Makarchuk, M. Yu., Lizogub, V. S. (2019). Specificities of Cortical Processing of Visual Information in Subjects with Hearing Deprivation (Congenital Deafness). Neurophysiology, 51 (5), 344–352. doi: https://doi.org/10.1007/s11062­020­09828­7
  • Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. doi: https://doi.org/10.3389/fncel.2018.00405
  • Maenner, M. J., Shaw, K. A., Baio, J. et al. (2016). Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. Morbidity and Mortality Weekly Report, 69 (4). Available at: https://www.cdc.gov/mmwr/volumes/69/ss/ss6904a1.htm
  • Catalá­López, F., Hutton, B., Page, M. J., Driver, J. A., Ridao, M., Alonso­Arroyo, A. et al. (2022). Mortality in Persons With Autism Spectrum Disorder or Attention­Deficit/Hyperactivity Disorder. JAMA Pediatrics, 176 (4), e216401. doi: https://doi.org/10.1001/jamapediatrics.2021.6401
  • O'Halloran, L., Coey, P., Wilson, C. (2022). Suicidality in autistic youth: A systematic review and meta­analysis. Clinical Psychology Review, 93, 102144. doi: https://doi.org/10.1016/j.cpr.2022.102144
  • Zheng, Z., Zheng, P., Zou, X. (2018). Association between schizophrenia and autism spectrum disorder: A systematic review and meta­analysis. Autism Research, 11 (8), 1110–1119. doi: https://doi.org/10.1002/aur.1977
  • Frye, R. E. (2022). A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. Journal of Personalized Medicine, 12 (3), 464. doi: https://doi.org/10.3390/jpm12030464
  • Cakir, J., Frye, R. E., Walker, S. J. (2020). The lifetime social cost of autism: 1990–2029. Research in Autism Spectrum Disorders, 72, 101502. doi: https://doi.org/10.1016/j.rasd.2019.101502
  • Tick, B., Bolton, P., Happé, F., Rutter, M., Rijsdijk, F. (2015). Heritability of autism spectrum disorders: a meta­analysis of twin studies. Journal of Child Psychology and Psychiatry, 57 (5), 585–595. doi: https://doi.org/10.1111/jcpp.12499
  • Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R., Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews Disease Primers, 2 (1). doi: https://doi.org/10.1038/rdp.2016.35
  • Mpoulimari, I., Zintzaras, E. (2022). Synthesis of genetic association studies on autism spectrum disorders using a genetic model­free approach. Psychiatric Genetics, 32 (3), 91–104. doi: https://doi.org/10.1097/ypg.0000000000000316
  • Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta­analysis. BMC Pediatrics, 20 (1). doi: https://doi.org/10.1186/s12887­020­02330­3
  • Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A., Naik, U., Radha Rama Devi, A. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. doi: https://doi.org/10.1097/ypg.0000000000000152
  • Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta­Analysis. Autism Research, 6 (5), 384–392. doi: https://doi.org/10.1002/aur.1300
  • Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. doi: https://doi.org/10.1007/s11011­016­9815­0
  • Sadeghiyeh, T., Dastgheib, S. A., Mirzaee­Khoramabadi, K., Morovati­Sharifabad, M., Akbarian­Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta­analysis. Asian Journal of Psychiatry, 46, 54–61. doi: https://doi.org/10.1016/j.ajp.2019.09.016
  • Haghiri, R., Mashayekhi, F., Bidabadi, E., Salehi, Z. (2016). Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiologiae Experimentalis, 76 (4), 318–323. doi: https://doi.org/10.21307/ane­2017­030
  • Chen, L., Shi, X.­J., Liu, H., Mao, X., Gui, L.­N., Wang, H., Cheng, Y. (2021). Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta­analysis of 87 studies (N = 9109). Translational Psychiatry, 11 (1). doi: https://doi.org/10.1038/s41398­020­01135­3
  • Frustaci, A., Neri, M., Cesario, A., Adams, J. B., Domenici, E., Dalla Bernardina, B., Bonassi, S. (2012). Oxidative stress­related biomarkers in autism: Systematic review and meta­analyses. Free Radical Biology and Medicine, 52 (10), 2128–2141. doi: https://doi.org/10.1016/j.freeradbiomed.2012.03.011
  • Guo, B.­Q., Li, H.­B., Ding, S.­B. (2020). Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta­analysis. Psychiatry Research, 291, 113283. doi: https://doi.org/10.1016/j.psychres.2020.113283
  • Wan, L., Li, Y., Zhang, Z., Sun, Z., He, Y., Li, R. (2018). Methylenetetrahydrofolate reductase and psychiatric diseases. Translational Psychiatry, 8 (1). doi: https://doi.org/10.1038/s41398­018­0276­6
  • Moll, S., Varga, E. A. (2015). Homocysteine and MTHFR Mutations. Circulation, 132 (1). doi: https://doi.org/10.1161/circulationaha.114.013311
  • James, S. J., Melnyk, S., Jernigan, S., Cleves, M. A., Halsted, C. H., Wong, D. H. et al. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B (8), 947–956. doi: https://doi.org/10.1002/ajmg.b.30366
  • Horiuchi, F., Yoshino, Y., Kumon, H., Hosokawa, R., Nakachi, K., Kawabe, K. et al. (2021). Identification of aberrant innate and adaptive immunity based on changes in global gene expression in the blood of adults with autism spectrum disorder. Journal of Neuroinflammation, 18 (1). doi: https://doi.org/10.1186/s12974­021­02154­7
  • Belardo, A., Gevi, F., Zolla, L. (2019). The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. The Journal of Nutritional Biochemistry, 70, 38–46. doi: https://doi.org/10.1016/j.jnutbio.2019.04.004
  • Bjørklund, G., Doşa, M. D., Maes, M., Dadar, M., Frye, R. E., Peana, M., Chirumbolo, S. (2021). The impact of glutathione metabolism in autism spectrum disorder. Pharmacological Research, 166, 105437. doi: https://doi.org/10.1016/j.phrs.2021.105437
  • Frye, R. E. (2020). Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Seminars in Pediatric Neurology, 35, 100829. doi: https://doi.org/10.1016/j.spen.2020.100829
  • Frye, R. E., Rossignol, D. A. (2014). Treatments for Biomedical Abnormalities Associated with Autism Spectrum Disorder. Frontiers in Pediatrics, 2. doi: https://doi.org/10.3389/fped.2014.00066
  • Rossignol, D. A., Frye, R. E. (2021). The Effectiveness of Cobalamin (B12) Treatment for Autism Spectrum Disorder: A Systematic Review and Meta­Analysis. Journal of Personalized Medicine, 11 (8), 784. doi: https://doi.org/10.3390/jpm11080784
  • Rossignol, D. A., Frye, R. E. (2021). Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta­Analysis. Journal of Personalized Medicine, 11 (11), 1141. doi: https://doi.org/10.3390/jpm11111141
  • Heuer, L., Ashwood, P., Schauer, J., Goines, P., Krakowiak, P., Hertz­Picciotto, I. et al. (2008). Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Research, 1 (5), 275–283. doi: https://doi.org/10.1002/aur.42
  • Jyonouchi, H., Geng, L., Streck, D. L., Toruner, G. A. (2012). Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. Journal of Neuroinflammation, 9 (1). doi: https://doi.org/10.1186/1742­2094­9­4
  • Rossignol, D. A., Frye, R. E. (2021). A Systematic Review and Meta­Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine, 11 (6), 488. doi: https://doi.org/10.3390/jpm11060488
  • Baj, J., Sitarz, E., Forma, A., Wróblewska, K., Karakuła­Juchnowicz, H. (2020). Alterations in the Nervous System and Gut Microbiota after β­Hemolytic Streptococcus Group A Infection – Characteristics and Diagnostic Criteria of PANDAS Recognition. International Journal of Molecular Sciences, 21 (4), 1476. doi: https://doi.org/10.3390/ijms21041476
  • Luleyap, Hu., Onatoglu, D., Yilmaz, Mb., Alptekin, D., Tahiroglu, A., Cetiner, S. et al. (2013). Association between pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections disease and tumor necrosis factor­α gene−308 g/a, −850 c/t polymorphisms in 4­12­year­old children in Adana/Turkey. Indian Journal of Human Genetics, 19 (2), 196. doi: https://doi.org/10.4103/0971­6866.116116
  • Wang, Z., Ding, R., Wang, J. (2020). The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta­Analysis. Nutrients, 13 (1), 86. doi: https://doi.org/10.3390/nu13010086
  • Yektaş, Ç., Alpay, M., Tufan, A. E. (2019). Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatric Disease and Treatment, 15, 2213–2219. doi: https://doi.org/10.2147/ndt.s212361
  • Furlano, R. I., Anthony, A., Day, R., Brown, A., McGarvey, L., Thomson, M. A. et al. (2001). Colonic CD8 and γδ T­cell infiltration with epithelial damage in children with autism. The Journal of Pediatrics, 138 (3), 366–372. doi: https://doi.org/10.1067/mpd.2001.111323
  • Deepmala, Slattery, J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., Frye, R. (2015). Clinical trials of N­acetylcysteine in psychiatry and neurology: A systematic review. Neuroscience & Biobehavioral Reviews, 55, 294–321. doi: https://doi.org/10.1016/j.neubiorev.2015.04.015
  • Warren, R. P., Foster, A., Margaretten, N. C. (1987). Reduced Natural Killer Cell Activity in Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 26 (3), 333–335. doi: https://doi.org/10.1097/00004583­198705000­00008
  • Warren, R. P., Yonk, L. J., Burger, R. A., Cole, P., Odell, J. D., Warren, W. L. et al. (1990). Deficiency of Suppressor­Inducer (Cd4+Cd45ra+) T Cells in Autism. Immunological Investigations, 19 (3), 245–251. doi: https://doi.org/10.3109/08820139009041839
  • Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van De Water, J. (2007). Brain­Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. doi: https://doi.org/10.1196/annals.1381.010
  • Frye, R. E., Sequeira, J. M., Quadros, E. V., James, S. J., Rossignol, D. A. (2012). Cerebral folate receptor autoantibodies in autism spectrum disorder. Molecular Psychiatry, 18 (3), 369–381. doi: https://doi.org/10.1038/mp.2011.175
  • Binstock, T. (2001). Intra­monocyte pathogens delineate autism subgroups. Medical Hypotheses, 56 (4), 523–531. doi: https://doi.org/10.1054/mehy.2000.1247
  • Crawley, J. N., Heyer, W.­D., LaSalle, J. M. (2016). Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends in Genetics, 32 (3), 139–146. doi: https://doi.org/10.1016/j.tig.2016.01.001
  • McDougle, C. J., Landino, S. M., Vahabzadeh, A., O'Rourke, J., Zurcher, N. R., Finger, B. C. et al. (2015). Toward an immune­mediated subtype of autism spectrum disorder. Brain Research, 1617, 72–92. doi: https://doi.org/10.1016/j.brainres.2014.09.048
  • Maltsev, D. (2022). Rezultaty otsinky imunnoho statusu u ditei z ras: imunodefitsyt, asotsiiovanyi z henetychnym defitsytom folatnoho tsyklu. Immunology and Allergy: Science and Practice, 4, 5–22. doi: https://doi.org/10.37321/immunology.2021.4­01
  • Careaga, M., Rogers, S., Hansen, R. L., Amaral, D. G., Van de Water, J., Ashwood, P. (2017). Immune Endophenotypes in Children With Autism Spectrum Disorder. Biological Psychiatry, 81 (5), 434–441. doi: https://doi.org/10.1016/j.biopsych.2015.08.036
  • Maltsev, D. (2020). Features of folate cycle disorders in children with ASD. Bangladesh Journal of Medical Science, 19 (4), 737–742. doi: https://doi.org/10.3329/bjms.v19i4.46634
  • Mauracher, A. A., Gujer, E., Bachmann, L. M., Güsewell, S., Pachlopnik Schmid, J. (2021). Patterns of Immune Dysregulation in Primary Immunodeficiencies: A Systematic Review. The Journal of Allergy and Clinical Immunology: In Practice, 9 (2), 792­802.e10. doi: https://doi.org/10.1016/j.jaip.2020.10.057
  • Isung, J., Williams, K., Isomura, K., Gromark, C., Hesselmark, E., Lichtenstein, P. et al. (2020). Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases. JAMA Psychiatry, 77 (11), 1147. doi: https://doi.org/10.1001/jamapsychiatry.2020.1260
  • Maltsev, D. (2021). The results of the study of the microbial spectrum in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Men's Health, Gender and Psychosomatic Medicine, 1­2, 26–39. doi: https://doi.org/10.37321/ujmh.2021.1­2­04
  • Chen, N., Zhang, X., Zheng, K., Zhu, L., Zhang, N., Liu, L. et al. (2019). Increased risk of group B Streptococcus causing meningitis in infants with mannose­binding lectin deficiency. Clinical Microbiology and Infection, 25 (3), 384.e1­384.e3. doi: https://doi.org/10.1016/j.cmi.2018.10.003
  • Asogwa, K., Buabeng, K., Kaur, A. (2017). Psychosis in a 15­Year­Old Female with Herpes Simplex Encephalitis in a Background of Mannose­Binding Lecithin Deficiency. Case Reports in Psychiatry, 2017, 1–5. doi: https://doi.org/10.1155/2017/1429847
  • Bagheri­Hosseinabadi, Z., Imani, D., Yousefi, H., Abbasifard, M. (2020). MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: a meta­analysis based on 16 studies. Clinical Rheumatology, 39 (8), 2267–2279. doi: https://doi.org/10.1007/s10067­020­05031­5
  • Maltsev, D. V. (2021). The results of the search for laboratory signs of autoimmune reactions to cerebral and extracerebral autoantigens in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Medical Science of Ukraine (MSU), 17 (3), 22–37. doi: https://doi.org/10.32345/2664­4738.3.2021.03
  • Carlus, S. J., Abdallah, A. M., Bhaskar, L. V. et al. (2016). The MTHFR C677T polymorphism is associated with mitral valve rheumatic heart disease. Eur. Rev. Med. Pharmacol Sci., 20 (1) 109–114.
  • Yigit, S., Inanir, A., Tural, S., Filiz, B., Tekcan, A. (2014). The effect of IL­4 and MTHFR gene variants in ankylosing spondylitis. Zeitschrift Für Rheumatologie, 74 (1), 60–66. doi: https://doi.org/10.1007/s00393­014­1403­2
  • Song, G. G., Bae, S.­C., Seo, Y. H., Kim, J.­H., Choi, S. J., Ji, J. D., Lee, Y. H. (2014). Meta­analysis of functional MBL polymorphisms. Zeitschrift Für Rheumatologie, 73 (7), 657–664. doi: https://doi.org/10.1007/s00393­014­1408­x
  • Glesse, N., Monticielo, O. A., Mattevi, V. S. et al. (2011). Association of mannose­binding lectin 2 gene polymorphic variants with susceptibility and clinical progression in systemic lupus erythematosus. Clin. Exp. Rheumatol, 29 (6), 983–990.
  • Schafranski, M. D., Stier, A., Nisihara, R., Messias­Reason, I. J. T. (2004). Significantly increased levels of mannose­binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clinical and Experimental Immunology, 138 (3), 521–525. doi: https://doi.org/10.1111/j.1365­2249.2004.02645.x
  • Aydin, S. Z., Atagunduz, P., Inanc, N. et al. (2007). Mannose binding lectin levels in spondyloarthropathies. J. Rheumatol, 34 (10), 2075–2077.
  • Li, M., Tang, Y., Zhao, E. Y. et al. (2021). Relationship between MTHFR gene polymorphism and susceptibility to bronchial asthma and glucocorticoid efficacy in children. Zhongguo Dang Dai Er Ke Za Zhi, 23 (8), 802–808. doi: https://doi.org/10.7499/j.issn.1008­8830.2105035
  • Wang, T., Zhang, H.­P., Zhang, X., Liang, Z.­A., Ji, Y.­L., Wang, G. (2015). Is Folate Status a Risk Factor for Asthma or Other Allergic Diseases? Allergy, Asthma & Immunology Research, 7 (6), 538. doi: https://doi.org/10.4168/aair.2015.7.6.538
  • Birbian, N., Singh, J., Jindal, S. K., Joshi, A., Batra, N., Singla, N. (2012). Association of the Wild­Type A/A Genotype of MBL2 Codon 54 with Asthma in a North Indian Population. Disease Markers, 32 (5), 301–308. doi: https://doi.org/10.1155/2012/757302
  • El­Hadidy, M. A., Abdeen, H. M., Abd El­Aziz, S. M., Al­Harrass, M. (2014). MTHFR Gene Polymorphism and Age of Onset of Schizophrenia and Bipolar Disorder. BioMed Research International, 2014, 1–9. doi: https://doi.org/10.1155/2014/318483
  • Peerbooms, O. L. J., van Os, J., Drukker, M., Kenis, G., Hoogveld, L., de Hert, M. et al. (2011). Meta­analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain, Behavior, and Immunity, 25 (8), 1530–1543. doi: https://doi.org/10.1016/j.bbi.2010.12.006
  • Foldager, L., Köhler, O., Steffensen, R., Thiel, S., Kristensen, A. S., Jensenius, J. C., Mors, O. (2014). Bipolar and panic disorders may be associated with hereditary defects in the innate immune system. Journal of Affective Disorders, 164, 148–154. doi: https://doi.org/10.1016/j.jad.2014.04.017
  • Peng, Q., Lao, X., Huang, X., Qin, X., Li, S., Zeng, Z. (2015). The MTHFR C677T polymorphism contributes to increased risk of Alzheimer's Disease: Evidence based on 40 case­control studies. Neuroscience Letters, 586, 36–42. doi: https://doi.org/10.1016/j.neulet.2014.11.049
  • Sjölander, A., Minthon, L., Nuytinck, L., Vanmechelen, E., Blennow, K., Nilsson, S. (2013). Functional mannose­binding lectin haplotype variants are associated with Alzheimer's disease. Journal of Alzheimer's Disease, 35 (1), 121–127. doi: https://doi.org/10.3233/jad­122044
  • Chen, F., Wen, T., Lv, Q., Liu, F. (2019). Associations between Folate Metabolism Enzyme Polymorphisms and Lung Cancer: A Meta­Analysis. Nutrition and Cancer, 72 (7), 1211–1218. doi: https://doi.org/10.1080/01635581.2019.1677924
  • Pine, S. R., Mechanic, L. E., Ambs, S., Bowman, E. D., Chanock, S. J., Loffredo, C. et al. (2007). Lung Cancer Survival and Functional Polymorphisms in MBL2, an Innate­Immunity Gene. JNCI: Journal of the National Cancer Institute, 99 (18), 1401–1409. doi: https://doi.org/10.1093/jnci/djm128
  • Russo, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 85. doi: https://doi.org/10.2147/ceg.s6051
  • Kovacs, M., Papp, M., Lakatos, P. L., Jacobsen, S., Nemes, E., Polgar, M. et al. (2013). Low mannose­binding lectin (MBL) is associated with paediatric inflammatory bowel diseases and ileal involvement in patients with Crohn disease. Journal of Crohn's and Colitis, 7 (2), 134–141. doi: https://doi.org/10.1016/j.crohns.2012.03.008
  • Rai, V., Yadav, U., Kumar, P., Yadav, S. K., Mishra, O. P. (2014). Maternal Methylenetetrahydrofolate Reductase C677T Polymorphism and Down Syndrome Risk: A Meta­Analysis from 34 Studies. PLoS ONE, 9 (9), e108552. doi: https://doi.org/10.1371/journal.pone.0108552
  • Nisihara, R. M., Utiyama, S. R. R., Oliveira, N. P., Messias­Reason, I. J. (2010). Mannan­binding lectin deficiency increases the risk of recurrent infections in children with Down's syndrome. Human Immunology, 71 (1), 63–66. doi: https://doi.org/10.1016/j.humimm.2009.09.361
  • Borges, M. C., Hartwig, F. P., Oliveira, I. O., Horta, B. L. (2015). Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study. The American Journal of Clinical Nutrition, 103 (1), 39–49. doi: https://doi.org/10.3945/ajcn.115.116038
  • Madsen, H. O., Videm, V., Svejgaard, A., Svennevig, J. L., Garred, P. (1998). Association of mannose­binding­lectin deficiency with severe atherosclerosis. The Lancet, 352 (9132), 959–960. doi: https://doi.org/10.1016/s0140­6736(05)61513­9
  • Chen, H., Yang, X Lu, M. (2015). Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: a systematic review and meta­analysis. Archives of Gynecology and Obstetrics, 293 (2), 283–290. doi: https://doi.org/10.1007/s00404­015­3894­8
  • Christiansen, O. B., Kilpatrick, D. C., Souter, V. et al. (1999). Mannan­Binding Lectin Deficiency is Associated with Unexplained Recurrent Miscarriage. Scandinavian Journal of Immunology, 49 (2), 193–196. doi: https://doi.org/10.1046/j.1365­3083.1999.00473.x
  • Yang, Y., Luo, Y., Yuan, J., Tang, Y., Xiong, L., Xu, M. et al. (2015). Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Archives of Gynecology and Obstetrics, 293 (6), 1197–1211. doi: https://doi.org/10.1007/s00404­015­3944­2
  • Hultström, M., Frithiof, R., Eriksson, O., Persson, B., Lipcsey, M., Ekdahl, K. N., Nilsson, B. (2020). Mannose­Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID­19 Patients. Thrombosis and Haemostasis, 120 (12), 1720–1724. doi: https://doi.org/10.1055/s­0040­1715835
  • Maltsev, D., Stefanyshyn, V. (2021). Efficacy of combined immunotherapy with propes and inflamafertin in selective deficiency of nk and nkt cells in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Romanian Journal of Neurology, 20 (2), 211–216. doi: https://doi.org/10.37897/rjn.2021.2.13
  • Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus­6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. doi: https://doi.org/10.1002/jnr.21203
  • Valayi, S., Eftekharian, M. M., Taheri, M., Alikhani, M. Y. (2018). Evaluation of antibodies to cytomegalovirus and Epstein­Barr virus in patients with autism spectrum disorder. Human Antibodies, 26 (3), 165–169. doi: https://doi.org/10.3233/hab­180335
  • Kuhn, M., Grave, S., Bransfield, R., Harris, S. (2012). Long term antibiotic therapy may be an effective treatment for children co­morbid with Lyme disease and Autism Spectrum Disorder. Medical Hypotheses, 78 (5), 606–615. doi: https://doi.org/10.1016/j.mehy.2012.01.037
  • Hughes, H. K., Ashwood, P. (2018). Anti­Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders. Frontiers in Psychiatry, 9. doi: https://doi.org/10.3389/fpsyt.2018.00627
  • Nayeri, T., Sarvi, S., Moosazadeh, M., Hosseininejad, Z., Sharif, M., Amouei, A., Daryani, A. (2020). Relationship between toxoplasmosis and autism: A systematic review and meta­analysis. Microbial Pathogenesis, 147, 104434. doi: https://doi.org/10.1016/j.micpath.2020.104434
  • Ghaziuddin, M., Al­Khouri, I., Ghaziuddin, N. (2002). Autistic symptoms following herpes encephalitis. European Child & Adolescent Psychiatry, 11 (3), 142–146. doi: https://doi.org/10.1007/s00787­002­0271­5
  • Sakamoto, A., Moriuchi, H., Matsuzaki, J., Motoyama, K., Moriuchi, M. (2015). Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain and Development, 37 (2), 200–205. doi: https://doi.org/10.1016/j.braindev.2014.03.016
  • Monge­Galindo, L., Pérez­Delgado, R., López­Pisón, J. et al. (2010). Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19­year period. Rev. Neurol., 50 (6), 341–348.
  • Wipfler, P., Dunn, N., Beiki, O., Trinka, E., Fogdell­Hahn, A. (2018). The Viral Hypothesis of Mesial Temporal Lobe Epilepsy – Is Human Herpes Virus­6 the Missing Link? A systematic review and meta­analysis. Seizure, 54, 33–40. doi: https://doi.org/10.1016/j.seizure.2017.11.015
  • Harberts, E., Yao, K., Wohler, J. E., Maric, D., Ohayon, J., Henkin, R., Jacobson, S. (2011). Human herpesvirus­6 entry into the central nervous system through the olfactory pathway. Proceedings of the National Academy of Sciences, 108 (33), 13734–13739. doi: https://doi.org/10.1073/pnas.1105143108
  • Lecointe, D., Fabre, M., Habes, D. et al. (2000). Macrophage activation syndrome in primary human herpes virus­6 infection: a rare condition after liver transplantation in infants. Gastroenterol. Clin. Biol., 24 (12), 1227–1228.
  • Li, Y., Viscidi, R. P., Kannan, G., McFarland, R., Pletnikov, M. V., Severance, E. G. et al. (2018). Chronic Toxoplasma gondii Infection Induces Anti­ N ­Methyl­ d ­Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology. Infection and Immunity, 86 (10). doi: https://doi.org/10.1128/iai.00398­18
  • Venâncio, P., Brito, M. J., Pereira, G., Vieira, J. P. (2014). Anti­N­methyl­D­aspartate Receptor Encephalitis with Positive Serum Antithyroid Antibodies, IgM Antibodies Against Mycoplasma pneumoniae and Human Herpesvirus 7 PCR in the CSF. Pediatric Infectious Disease Journal, 33 (8), 882–883. doi: https://doi.org/10.1097/inf.0000000000000408
  • Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L., Cole, P. (1993). Antibodies to Myelin Basic Protein in Children with Autistic Behavior. Brain, Behavior, and Immunity, 7(1), 97–103. doi: https://doi.org/10.1006/brbi.1993.1010
  • Kong, X., Liu, J., Cetinbas, M., Sadreyev, R., Koh, M., Huang, H., et al. (2019). New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutrients, 11 (9), 2128. doi: https://doi.org/10.3390/nu11092128
  • Snider, L. A., Lougee, L., Slattery, M., Grant, P., Swedo, S. E. (2005). Antibiotic prophylaxis with azithromycin or penicillin for childhood­onset neuropsychiatric disorders. Biological Psychiatry, 57 (7), 788–792. doi: https://doi.org/10.1016/j.biopsych.2004.12.035
  • Brimberg, L., Sadiq, A., Gregersen, P. K., Diamond, B. (2013). Brain­reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Molecular Psychiatry, 18 (11), 1171–1177. doi: https://doi.org/10.1038/mp.2013.101
  • Kern, J. K., Geier, D. A., Mehta, J. A., Homme, K. G., Geier, M. R. (2020). Mercury as a hapten: A review of the role of toxicant­induced brain autoantibodies in autism and possible treatment considerations. Journal of Trace Elements in Medicine and Biology, 62, 126504. doi: https://doi.org/10.1016/j.jtemb.2020.126504
  • Mostafa, G. A., El­Sherif, D. F., Al­Ayadhi, L. Y. (2014). Systemic auto­antibodies in children with autism. Journal of Neuroimmunology, 272 (1­2), 94–98. doi: https://doi.org/10.1016/j.jneuroim.2014.04.011
  • Whiteley, P., Marlow, B., Kapoor, R. R., Blagojevic­Stokic, N., Sala, R. (2021). Autoimmune Encephalitis and Autism Spectrum Disorder. Frontiers in Psychiatry, 12. doi: https://doi.org/10.3389/fpsyt.2021.775017
  • Maltsev, D. V. (2021). Efficacy of Rituximab in Autism Spectrum Disorders Associated with Genetic Folate Cycle Deficiency with Signs of Antineuronal Autoimmunity. Psychotherapy and Clinical Psychologythis, 12 (3), 472–486. doi: https://doi.org/10.34883/pi.2021.12.3.010
  • Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta­analysis. Molecular Psychiatry, 20 (4), 440–446. doi: https://doi.org/10.1038/mp.2014.59
  • Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod­Mobarakeh, A., Rezaei, N. (2019). A meta­analysis of pro­inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. doi: https://doi.org/10.1016/j.jpsychires.2019.05.019
  • Jyonouchi, H., Geng, L., Ruby, A., Zimmerman­Bier, B. (2005). Dysregulated Innate Immune Responses in Young Children with Autism Spectrum Disorders: Their Relationship to Gastrointestinal Symptoms and Dietary Intervention. Neuropsychobiology, 51 (2), 77–85. doi: https://doi.org/10.1159/000084164
  • Thom, R. P., Keary, C. J., Palumbo, M. L., Ravichandran, C. T., Mullett, J. E., Hazen, E. P. et al. (2019). Beyond the brain: A multi­system inflammatory subtype of autism spectrum disorder. Psychopharmacology, 236 (10), 3045–3061. doi: https://doi.org/10.1007/s00213­019­05280­6
  • Maltsev, D. (2021). Evaluation of markers of inflammation and neuronal damage in patients with autism spectrum disorders associated with genetic deficiency of the folate cycle. Immunology and Allergy: Science and Practice, 3, 31–39. doi: https://doi.org/10.37321/immunology.2021.3­04
  • Lv, M., Zhang, H., Shu, Y., Chen, S., Hu, Y., Zhou, M. (2016). The neonatal levels of TSB, NSE and CK­BB in autism spectrum disorder from Southern China. Translational Neuroscience, 7 (1), 6–11. doi: https://doi.org/10.1515/tnsci­2016­0002
  • Zheng, Z., Zheng, P., Zou, X. (2020). Peripheral Blood S100B Levels in Autism Spectrum Disorder: A Systematic Review and Meta­Analysis. Journal of Autism and Developmental Disorders, 51 (8), 2569–2577. doi: https://doi.org/10.1007/s10803­020­04710­1
  • Maltsev, D., Natrus, L. (2020). The effectiveness of infliximab in autism spectrum disorders associated with folate cycle genetic deficiency. Psychiatry, Psychotherapy and Clinical Psychologythis, 3, 583–594. doi: https://doi.org/10.34883/pi.2020.11.3.015
  • Xu, G., Snetselaar, L. G., Jing, J., Liu, B., Strathearn, L., Bao, W. (2018). Association of Food Allergy and Other Allergic Conditions With Autism Spectrum Disorder in Children. JAMA Network Open, 1 (2), e180279. doi: https://doi.org/10.1001/jamanetworkopen.2018.0279
  • Theoharides, T. C., Tsilioni, I., Patel, A. B., Doyle, R. (2016). Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Translational Psychiatry, 6 (6), e844–e844. doi: https://doi.org/10.1038/tp.2016.77
  • Theoharides, T. C. (2013). Is a Subtype of Autism an Allergy of the Brain? Clinical Therapeutics, 35 (5), 584–591. doi: https://doi.org/10.1016/j.clinthera.2013.04.009
  • Cao, L.­H., He, H.­J., Zhao, Y.­Y., Wang, Z.­Z., Jia, X.­Y., Srivastava, K. et al. (2022). Food Allergy­Induced Autism­Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. Journal of Asthma and Allergy, Volume 15, 645–664. doi: https://doi.org/10.2147/jaa.s348609
  • Yu, Y., Huang, J., Chen, X., Fu, J., Wang, X., Pu, L. et al. (2022). Efficacy and Safety of Diet Therapies in Children With Autism Spectrum Disorder: A Systematic Literature Review and Meta­Analysis. Frontiers in Neurology, 13. doi: https://doi.org/10.3389/fneur.2022.844117
  • Fiorentino, M., Sapone, A., Senger, S., Camhi, S. S., Kadzielski, S. M., Buie, T. M. et al. (2016). Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 7 (1). doi: https://doi.org/10.1186/s13229­016­0110­z
  • Azhari, A., Azizan, F., Esposito, G. (2018). A systematic review of gut­immune­brain mechanisms in Autism Spectrum Disorder. Developmental Psychobiology, 61(5), 752–771. doi: https://doi.org/10.1002/dev.21803
  • Bouboulis, D., Mast, P. (2016). Infection­Induced Autoimmune Encephalopathy: Treatment with Intravenous Immune Globulin Therapy. A Report of Six Patients. International Journal of Neurology Research, 2 (1), 256–258. doi: https://doi.org/10.17554/j.issn.2313­5611.2016.02.44
  • Molina-López, J., Leiva-García, B., Planells, E., Planells, P. (2021). Food selectivity, nutritional inadequacies, and mealtime behavioral problems in children with autism spectrum disorder compared to neurotypical children. International Journal of Eating Disorders, 54 (12), 2155–2166. doi: https://doi.org/10.1002/eat.23631
  • Minshew, N. J., Williams, D. L. (2007). The New Neurobiology of Autism. Archives of Neurology, 64 (7), 945. doi: https://doi.org/10.1001/archneur.64.7.945
  • Hardan, A. Y., Fung, L. K., Frazier, T., Berquist, S. W., Minshew, N. J., Keshavan, M. S., Stanley, J. A. (2016). A proton spectroscopy study of white matter in children with autism. Progress in Neuro­Psychopharmacology and Biological Psychiatry, 66, 48–53. doi: https://doi.org/10.1016/j.pnpbp.2015.11.005
  • Marseglia, L. M., Nicotera, A., Salpietro, V., Giaimo, E., Cardile, G., Bonsignore, M. et al. (2015). Hyperhomocysteinemia and MTHFR Polymorphisms as Antenatal Risk Factors of White Matter Abnormalities in Two Cohorts of Late Preterm and Full Term Newborns. Oxidative Medicine and Cellular Longevity, 2015, 1–8. doi: https://doi.org/10.1155/2015/543134
  • Pavone, V., Praticò, A. D., Parano, E., Pavone, P., Verrotti, A., Falsaperla, R. (2012). Spine and brain malformations in a patient obligate carrier of MTHFR with autism and mental retardation. Clinical Neurology and Neurosurgery, 114 (9), 1280–1282. doi: https://doi.org/10.1016/j.clineuro.2012.03.008
  • Maltsev, D. V. (2021). Neuroradiological signs of encephalopathy in children with autism spectrum disorders associated with genetic folate deficiency. Ukrainian Neurological Journal, 3–4, 16–30. doi: https://doi.org/10.30978/unj2021­3­16
  • González Toro, M. C., Jadraque Rodríguez, R., Sempere Pérez, Á., Martínez Pastor, P., Jover Cerdá, J., Gómez Gosálvez, F. A. (2013). Encefalitis antirreceptor de NMDA: dos casos pediátricos. Revista de Neurología, 57 (11), 504. doi: https://doi.org/10.33588/rn.5711.2013272
  • Pinillos Pisón, R., Llorente Cereza, M. T., López Pisón, J., Pérez Delgado, R., Lafuente Hidalgo, M., Martínez Sapiñá, A., Peña Segura, J. L. (2009). Infección congénita por citomegalovirus. Revisión de nuestra experiencia diagnóstica de 18 años. Revista de Neurología, 48 (07), 349. doi: https://doi.org/10.33588/rn.4807.2008391
  • Maltsev, D. V. (2022). The results of a retrospective analysis of the use of normal intravenous human immunoglobulin in high dose for the treatment of immune­dependent encephalopathy with a clinical picture of autism spectrum disorders in children with genetic deficiency of the folate cycle. International Neurological Journal, 17 (8), 26–38. doi: https://doi.org/10.22141/2224­0713.17.8.2021.250818
  • Perlmutter, S. J., Leitman, S. F., Garvey, M. A., Hamburger, S., Feldman, E., Leonard, H. L., Swedo, S. E. (1999). Therapeutic plasma exchange and intravenous immunoglobulin for obsessive­compulsive disorder and tic disorders in childhood. The Lancet, 354 (9185), 1153–1158. doi: https://doi.org/10.1016/s0140­6736(98)12297­3
  • Slingsby, B., Yatchmink, Y., Goldberg, A. (2017). Typical Skin Injuries in Children With Autism Spectrum Disorder. Clinical Pediatrics, 56 (10), 942–946. doi: https://doi.org/10.1177/0009922817705187
  • Bradstreet, J. J., Smith, S., Baral, M., Rossignol, D. A. (2010). Biomarker­guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev., 15 (1), 15–32.
  • Liu, H., Talalay, P., W. Fahey, J. (2016). Biomarker­Guided Strategy for Treatment of Autism Spectrum Disorder (ASD). CNS & Neurological Disorders ­ Drug Targets, 15 (5), 602–613. doi: https://doi.org/10.2174/1871527315666160413120414
  • Frye, R. E., Rose, S., Boles, R. G., Rossignol, D. A. (2022). A Personalized Approach to Evaluating and Treating Autism Spectrum Disorder. Journal of Personalized Medicine, 12 (2), 147. doi: https://doi.org/10.3390/jpm12020147
  • Kuss, D. J., Lopez­Fernandez, O. (2016). Internet addiction and problematic Internet use: A systematic review of clinical research. World Journal of Psychiatry, 6 (1), 143–176. doi: https://doi.org/10.5498/wjp.v6.i1.143
  • Petrosyan, A. (2023). Internet and social media users in the world 2023. Statista. Available at: https://www.statista.com/statistics/617136/digital­population­worldwide/
  • Bindé, J., Matsuura, K. (Eds.) (2005). Towards knowledge societies. UNESCO Pub, 237.
  • Yuryeva, L. N. (2014). Kompiuternaia zavisimost­addiktciia obshchestva, osnovannogo na znaniiakh. Tiumenskii Meditcinskii Zhurnal, 16 (1), 54–55.
  • Yuryeva, L. N. (2015). Formirovanie kiberkultury: Ot klinopisi k Internetu. Novosti Meditciny i Farmatcii, 15 (558), 20–21.
  • Maruta, N. O., Yuryeva, L. M. (Ed.) (2022). Okhorona psykhichnoho zdorov'ia. Strokov D. V.
  • Young, K., Pistner, M., O'Mara, J., Buchanan, J. (1999). Cyber Disorders: The Mental Health Concern for the New Millennium. CyberPsychology & Behavior, 2 (5), 475–479. doi: https://doi.org/10.1089/cpb.1999.2.475
  • Orzack, M. H. (1999). Cyberkids: Overdosing on computers? FCD Update, 4, 1.
  • Chakraborty, K., Basu, D., Vijaya Kumar, K. G. (2010). Internet addiction: Consensus, controversies, and the way ahead. East Asian Archives of Psychiatry, 20 (3), 123–132.
  • Weinstein, A. (2015). Comorbidity of Internet addiction with other psychiatric conditions. Journal of Behavioral Addictions, 4 (S1), 43–44.
  • Christakis, D. A., Moreno, M. M., Jelenchick, L., Myaing, M. T., Zhou, C. (2011). Problematic internet usage in US college students: a pilot study. BMC Medicine, 9 (1). doi: https://doi.org/10.1186/1741­7015­9­77
  • Poli, R., Agrimi, E. (2011). Internet addiction disorder: Prevalence in an Italian student population. Nordic Journal of Psychiatry, 66 (1), 55–59. doi: https://doi.org/10.3109/08039488.2011.605169
  • Park, S., Jeon, H. J., Bae, J. N., Seong, S. J., Hong, J. P. (2017). Prevalence and Psychiatric Comorbidities of Internet Addiction in a Nationwide Sample of Korean Adults. Psychiatry Investigation, 14 (6), 879–882. doi: https://doi.org/10.4306/pi.2017.14.6.879
  • Xu, J., Shen, L., Yan, C., Hu, H., Yang, F., Wang, L. et al. (2012). Personal characteristics related to the risk of adolescent internet addiction: a survey in Shanghai, China. BMC Public Health, 12 (1). doi: https://doi.org/10.1186/1471­2458­12­1106
  • Starcevic, V. (2013). Is Internet addiction a useful concept? Australian & New Zealand Journal of Psychiatry, 47 (1), 16–19. doi: https://doi.org/10.1177/0004867412461693
  • Lin, X., Su, W., Potenza, M. N. (2018). Development of an Online and Offline Integration Hypothesis for Healthy Internet Use: Theory and Preliminary Evidence. Frontiers in Psychology, 9. doi: https://doi.org/10.3389/fpsyg.2018.00492
  • Marks, I. (1990). Behavioural (non­chemical) addictions. Addiction, 85 (11), 1389–1394. doi: https://doi.org/10.1111/j.1360­0443.1990.tb01618.x
  • Goldberg, I. (1996). Internet addiction disorder. CyberPsychol. Behavior, 3 (4), 403–412.
  • Young, K. S. (1998). Internet Addiction: The Emergence of a New Clinical Disorder. CyberPsychology & Behavior, 1 (3), 237–244. doi: https://doi.org/10.1089/cpb.1998.1.237
  • Davis, R. A. (2001). A cognitive­behavioral model of pathological Internet use. Computers in Human Behavior, 17 (2), 187–195. doi: https://doi.org/10.1016/s0747­5632(00)00041­8
  • Hall, A. S., Parsons, J. (2001). Internet addiction: College student case study using best practices in cognitive behavior therapy. Journal of Mental Health Counseling, 23 (4), 312–328.
  • Sánchez Palacios, B. I., Zambrano Vera, G. (2020). La ciberadicción en el rendimiento académico de los estudiantes de educación básica superior de la escuela Cicerón Robles Velásquez, 2019. Caribeña de Ciencias Sociales, agosto, Article agosto. Available at: https://www.eumed.net/rev/caribe/2020/08/ciberadiccion.html
  • Grant, J. E., Potenza, M. N., Weinstein, A., Gorelick, D. A. (2010). Introduction to Behavioral Addictions. The American Journal of Drug and Alcohol Abuse, 36 (5), 233–241. doi: https://doi.org/10.3109/00952990.2010.491884
  • Beard, K. W., Wolf, E. M. (2001). Modification in the Proposed Diagnostic Criteria for Internet Addiction. CyberPsychology & Behavior, 4 (3), 377–383. doi: https://doi.org/10.1089/109493101300210286
  • Fisoun, V., Floros, G., Siomos, K., Geroukalis, D., Navridis, K. (2012). Internet Addiction as an Important Predictor in Early Detection of Adolescent Drug Use Experience – Implications for Research and Practice. Journal of Addiction Medicine, 6 (1), 77–84. doi: https://doi.org/10.1097/adm.0b013e318233d637
  • Lee, Y. S., Han, D. H., Yang, K. C., Daniels, M. A., Na, C., Kee, B. S., Renshaw, P. F. (2008). Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. Journal of Affective Disorders, 109 (1­2), 165–169. doi: https://doi.org/10.1016/j.jad.2007.10.020
  • Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., Lei, H. (2012). Abnormal White Matter Integrity in Adolescents with Internet Addiction Disorder: A Tract­Based Spatial Statistics Study. PLoS ONE, 7 (1), e30253. doi: https://doi.org/10.1371/journal.pone.0030253
  • Zhou, Y., Lin, F., Du, Y., Qin, L., Zhao, Z., Xu, J., Lei, H. (2011). Gray matter abnormalities in Internet addiction: A voxel­based morphometry study. European Journal of Radiology, 79 (1), 92–95. doi: https://doi.org/10.1016/j.ejrad.2009.10.025
  • Brand, M., Young, K. S., Laier, C., Wölfling, K., Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet­use disorders: An Interaction of Person­Affect­Cognition­Execution (I­PACE) model. Neuroscience & Biobehavioral Reviews, 71, 252–266. doi: https://doi.org/10.1016/j.neubiorev.2016.08.033
  • Shaikh, B., Jumain, R. S. A. (2014). Grounded Theory of Consumer Loyalty, a Perspective through Video Game Addiction. International Journal of Economics and Management Engineering, 8 (5), 1542–1544.
  • Weinstein, A., Curtiss Feder, L., Rosenberg, K. P., Dannon, P.; Rosenberg, K. P., Feder, L. C. (Eds.) (2014). Chapter 5 – Internet Addiction Disorder: Overview and Controversies. Behavioral Addictions. Academic Press, 99–117. doi: https://doi.org/10.1016/B978­0­12­407724­9.00005­7
  • Carli, V., Durkee, T., Wasserman, D., Hadlaczky, G., Despalins, R., Kramarz, E. et al. (2012). The Association between Pathological Internet Use and Comorbid Psychopathology: A Systematic Review. Psychopathology, 46 (1), 1–13. doi: https://doi.org/10.1159/000337971
  • Van Rooij, A. J., Kuss, D. J., Griffiths, M. D., Shorter, G. W., Schoenmakers, T. M., van de Mheen, D. (2014). The (co­)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents. Journal of Behavioral Addictions, 3 (3), 157–165. doi: https://doi.org/10.1556/jba.3.2014.013
  • Rücker, J., Akre, C., Berchtold, A., Suris, J.­C. (2015). Problematic Internet use is associated with substance use in young adolescents. Acta Paediatrica, 104 (5), 504–507. doi: https://doi.org/10.1111/apa.12971
  • Evren, C., Dalbudak, E., Evren, B., Demirci, A. C. (2014). High risk of Internet addiction and its relationship with lifetime substance use, psychological and behavioral problems among 10(th) grade adolescents. Psychiatria Danubina, 26 (4), 330–339.
  • Yen, C., Tang, T., Yen, J., Lin, H., Huang, C., Liu, S., Ko, C. (2008). Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. Journal of Adolescence, 32 (4), 863–873. doi: https://doi.org/10.1016/j.adolescence.2008.10.006
  • Recupero, P. R., Harms, S. E., Noble, J. M. (2008). Googling Suicide. The Journal of Clinical Psychiatry, 69 (6), 878–888. doi: https://doi.org/10.4088/jcp.v69n0601
  • Paik, A., Oh, D., Kim, D. (2014). A Case of Withdrawal Psychosis from Internet Addiction Disorder. Psychiatry Investigation, 11 (2), 207. doi: https://doi.org/10.4306/pi.2014.11.2.207
  • Dong, G., Lu, Q., Zhou, H., Zhao, X. (2011). Precursor or Sequela: Pathological Disorders in People with Internet Addiction Disorder. PLoS ONE, 6 (2), e14703. doi: https://doi.org/10.1371/journal.pone.0014703
  • Cho, S.­M., Sung, M.­J., Shin, K.­M., Lim, K. Y., Shin, Y.­M. (2012). Does Psychopathology in Childhood Predict Internet Addiction in Male Adolescents? Child Psychiatry & Human Development, 44 (4), 549–555. doi: https://doi.org/10.1007/s10578­012­0348­4
  • Zhou, J., Friedel, M., Rosmarin, D. H., Pirutinsky, S. (2023). Internet Addiction and the Treatment of Depression? A Prospective Naturalistic Outcome Study. Cyberpsychology, Behavior, and Social Networking, 26 (2), 121–126. doi: https://doi.org/10.1089/cyber.2022.0184
  • Xie, X., Cheng, H., Chen, Z. (2023). Anxiety predicts internet addiction, which predicts depression among male college students: A cross­lagged comparison by sex. Frontiers in Psychology, 13. doi: https://doi.org/10.3389/fpsyg.2022.1102066
  • Yuryeva, L. N., Bolbot, T. Yu. (2006). Kompiuternaia zavisimost: Formirovanie, diagnostika, kor rektciia i profilaktika. Porogi, 196.
  • Yuryeva, L. N., Bolbot, T. Yu., Nosov, S. H. (2004). Sluchai symptomatycheskoi kompiuternoi zavysymosty u patsyenta s orhanycheskym porazhenyem tsentralnoi nervnoi systemi. Arkhiv Psykhiatrii, 10 (3 (38)), 134–138.
  • Block, J. J. (2008). Issues for DSM­V: Internet Addiction. American Journal of Psychiatry, 165 (3), 306–307. doi: https://doi.org/10.1176/appi.ajp.2007.07101556
  • Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y., Li, M. (2010). Proposed diagnostic criteria for internet addiction. Addiction, 105 (3), 556–564. doi: https://doi.org/10.1111/j.1360­0443.2009.02828.x
  • Ko, C.­H., Yen, J.­Y., Chen, S.­H., Yang, M.­J., Lin, H.­C., Yen, C.­F. (2009). Proposed diagnostic criteria and the screening and diagnosing tool of Internet addiction in college students. Comprehensive Psychiatry, 50 (4), 378–384. https://doi.org/10.1016/j.comppsych.2007.05.019
  • Ko, C.­H., Yen, J.­Y., Chen, C.­C., Chen, S.­H., Yen, C.­F. (2005). Proposed Diagnostic Criteria of Internet Addiction for Adolescents. The Journal of Nervous and Mental Disease, 193 (11), 728–733. doi: https://doi.org/10.1097/01.nmd.0000185891.13719.54
  • ICD­11 for Mortality and Morbidity Statistics (2021). WHO. International classification of diseases. Available at: https://icd.who.int/browse11/l­m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f499894965
  • Nuller, Yu. L., Tsyrkyn, S. Yu. (Eds.) (1994). Mezhdunarodnaia klassyfykatsyia boleznei (10­i peresmotr). Klassyfykatsyia psykhycheskykh y povedencheskykh rasstroistv. Klynycheskye opysanyia y ukazanyia po dyahnostyke. Adys.
  • Diagnostic and Statistical Manual of Mental Disorders (2013). American Psychiatric Association. doi: https://doi.org/10.1176/appi.books.9780890425596
  • Laconi, S., Rodgers, R. F., Chabrol, H. (2014). The measurement of Internet addiction: A critical review of existing scales and their psychometric