Published January 10, 2023 | Version v1
Poster Open

Contemporaneous Observations of Hα Luminosities and Photometric Amplitudes for M dwarfs

  • 1. Department of Physics and Astronomy, Dartmouth College, Hanover NH 03755, USA
  • 2. Department of Physics, Lafayette College, 730 High Street, Easton, PA 18042, USA
  • 3. Infrared Processing and Analysis Center, Caltech, Pasadena CA 91125, USA

Description

Many M dwarfs are known to have strong magnetic fields, but we are still unsure about the properties of their starspots and the origin of their magnetic dynamos. Both starspots and magnetic activity are related to the surface magnetic field, so one means of examining magnetic phenomena is to connect photometric variability (driven by starspots) and magnetic activity. We studied 56 M dwarfs with periods of 0.1 to 27 days. We present time-series optical photometry from the Transiting Exoplanet Survey Satellite (TESS) and contemporaneous optical spectra obtained using the Ohio State MultiObject Spectrograph (OSMOS) on the MDM 2.4m telescope in Arizona. Using the TESS light curves, we measure rotation periods and photometric amplitudes. From the OSMOS spectra, we calculate the equivalent width of Hα. We find a loose positive correlation between Hα luminosity and photometric amplitudes for stars in the saturated regime of the rotation-activity relation (Pearson correlation coefficient \(0.664^{+0.023}_{-0.026}\)). We additionally see short term variability in Hα equivalent widths and enhancement from flares.

Files

CoolStars21-Garcia_Soto_et_al.22.pdf

Files (20.5 MB)

Name Size Download all
md5:ffa342c3df55b8d1240d181effdc583c
20.5 MB Preview Download

Additional details

References

  • Agol, E. et al. (2020), AJ, 159, 123
  • Angus, R. et al. (2018), MNRAS, 474, 2094
  • Astropy Collaboration, et al. (2013), A&A, 558, A33
  • Barentsen, G. et al. (2020), KeplerGO/lightkurve: Lightkurve v1.11.0, Zenodo
  • Douglas, S. T. et al. (2014), ApJ, 795, 161
  • Feinstein, A., D. et al. (2020), JOSS , 5, 2347
  • Feinstein, A. D. et al. (2020), AJ, 160, 219
  • Foreman-Mackey, D. (2018), arXiv:1801.10156
  • Foreman-Mackey, D. et al. (2017), ASCL, ascl:1709.008
  • Foreman-Mackey, D. et al. (2020), exoplanet-dev/exoplanet: exoplanet v0.3.2, Zenodo
  • Foreman-Mackey, D. et al. (2020), dfm/celerite: celerite v0.4.0, Zenodo
  • Fouqué, P. et al. (2018), MNRAS, 475, 1960
  • Kesseli, A. Y. et al. (2018), AJ, 155, 225
  • Kruse, E. A. et al. (2010), ApJ, 722, 1352
  • Lee, K.-G. et al. (2010), ApJ, 708, 1482
  • Lightkurve Collaboration et al. (2018), ASCL, ascl:1812.013
  • Martini, P. et al. (2011), PASP, 123, 187
  • McQuillan, A. et al. (2012), A&A, 539, A137
  • McQuillan, A. et al. (2013), MNRAS, 432, 1203
  • Medina, A. A. et al. (2022), ApJ, 928, 185
  • Newton, E. R. et al. (2016), ApJ, 821, 93
  • Newton, E. R. et al. (2017), ApJ, 834, 85
  • Reiners, A. et al. (2018), A&A, 612, A49
  • Ricker, G. R. et al. (2015), JATIS, 1, 01400
  • Wright, N. J. et al. (2018), MNRAS, 479, 2351