
• Cross-correlate three M dwarf catalogs with : Fouqué+18, 
Reiners+18 and Kesseli+18 against Newton+16,17.


• Other Constraints:

‣ V magnitude ( )

‣  d (TESS sector length; Ricker+15)


• Merged catalog 133 targets:

‣Observed 65 with MDM 2.4m Ohio State Multi-Object 

Spectrograph (OSMOS; Martini+11)

- Multiple observations for 22. 

- Final sample: 56 were observed close in time by TESS.
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We selected M dwarfs in the Northern 
Hemisphere with existing Rotation Periods and 

v sin i

A Scattered Relationship between  and Photometric Variability for M dwarfs in the Saturated Regime 
exists!

LHα/Lbol

Contemporaneous Observations of Hα Luminosities and 
Photometric Amplitudes for M dwarfs

•Active stars can produce 
frequent flares which we 
remove to get amplitude:


1. Use Feinstein+20a,b's stella 
which trains a CNN using 
TESS light curves (LC). 


2. Bin to 10 minutes 

3. Fit a Gaussian process model 

to the data, masking additional 
outliers.

•Newton+17 noted a positive 
correlation between 
photometric amplitude and 

 for mid-to-late M 
dwarfs (  days; the 
Northern Hemisphere). 


•They concluded the 
experiment could benefit  
from considering non-
sinusoidal rotational 
variability and spot evolution.

LHα /Lbol
Prot < 200

•We obtained low-resolution 
optical spectra using the 
OSMOS. 


•An example spectrum 
shows strong emission at 

, due to magnetic 
heating of the stellar 
atmosphere.

Hα

We obtained low-resolution optical spectra contemporaneously with optical photometry from TESS.

Does a relationship between  and Photometric 
variability exist?

LHα/Lbol

•Periods using Gaussian 
processes. 


•We estimate newer periods: 


‣  -  The literature 
period is an alias of the 
true period.


‣ - The literature 
period is double the true 
period. 

•Rvar (McQuillan+12,13; 
)


•The x-axis error bars are 
range of  EWs. 


•Although the data is 
contemporaneous, the 
significant scatter is real. 
This is maybe because the 
magnetic field proxies 
measure different processes.

0.5 × (95th % − 5th %)

Hα

•Top panels show portions of 
the TESS LCs, while the 
bottom panels show 
contemporaneous  EW 
time-series. 


•Like Kruse+10, Lee+10 and 
Medina+22, EWs vary on 
timescales less than an hour. 


•Evidence of flare 
enhancement BJTD 
2459188.800 — 2459188.825. 

Hα

•Rotation-activity plot for 
stars in our sample


‣The Rossby number 
(rotational period over 
convective overturn) is 
defined in Wright+18.


‣The stars are all on 
the saturated regime.
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