Published July 19, 2022 | Version v1
Journal article Open

Post-fire recovery of soil microbial functions is promoted by plant growth

  • 1. Joint Research Unit CTFC - AGROTECNIO, Solsona, Catalonia, Spain
  • 2. Universitat de Barcelona, Catalonia, Spain

Description

Forest fires can alter the biological properties of soils. There is increasing evidence that fires cause a shift in soil microbial communities, which play a central role in forest carbon and nutrient cycling. In this study, we evaluate the effect of soil heating on soil microbial functions. We hypothesised that fire reduces the catabolic functional diversity of soil, and that post-fire plant
growth enhances its recovery. To test this, we experimentally heated a forest soil at 200C (T200) or 450C (T450). Heated and unheated soils were then incubated in tubs with or without live grass (Lolium perenne L.). We determined the functional profiles by measuring the substrate-induced respiration (SIR) using the Microresp™ technique and analysed nutrient availability at the end of the incubation. At both temperatures, soil heating altered the respiration responses to substrate additions and the catabolic functional diversity of soils. Functional diversity was initially reduced in T200 soils but recovered at the end of the incubation. In contrast, T450 soils initially maintained the catabolic functional diversity, but decreased at the end of the incubation. Heating induced nutrient availability stimulated the growth of grass, which in turn increased the response to several substrates and increased the functional diversity to values similar to the unheated controls. Our results suggest that firedriven alteration of soil microbial communities has consequences at a functional level, and that the recovery of plant communities enhances the recovery of soil microbial functions.
Highlights
• Soil experimental heating altered microbial functions and reduced soil functional diversity.
• Soil heating also increased nutrient availability, enhancing plant growth.
• Growth of plants promoted the recovery of soil functional diversity.
• Post-fire recovery of functional diversity may be related to the recovery of photosynthetic tissues.

Files

Garcia_Pausas_2022_EurJSoilScience.pdf

Files (2.3 MB)

Name Size Download all
md5:1d9bf4dab7865cb0cec503197d9a3ac0
2.3 MB Preview Download

Additional details

Funding

HoliSoils – Holistic management practices, modelling and monitoring for European forest soils 101000289
European Commission